

ICN2053

(16-Channel PWM Constant Current LED Sink Driver)

Description

The ICN2053 is a 16-channel PWM constant current sink output LED driver for 1:32 time multiplexing applications. The constant-current value of all 16 channels is set by a single external resistor.

ICN2053 converts serial input date into each pixel's gray scale of the output port by a 16-bit shift register.ICN2053 detects individual LED open errors without extra components. ICN2053 also integrated pre-charge circuit for ghosting reduction, LED protect circuit.

The ICN2053 exploits current precision controlling technology, which makes error between ICs less than $\pm 2.0\%$, and error between channels less than $\pm 2.0\%$.

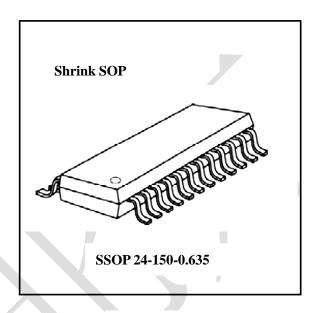
Features

- ♦ 16 constant-current output channels
- ♦ Support time-multiplexing for 1~32 scans
- Output current setting range:
 - 0.5~25mA×16@V_{DD}=5V constant current output
 - 0.5~18mA×16@V_{DD}=4.2V constant current output
 - 0.5~10mA×16@V_{DD}=3.3V constant current output
- ♦ Current accuracy

Between channel :< ±2.0 %(Max.)

Between ICs :< ±2.0 % (Max.)

- ♦ 8 bit current gain: 12.5%~200%
- ♦ Fast response of output current:

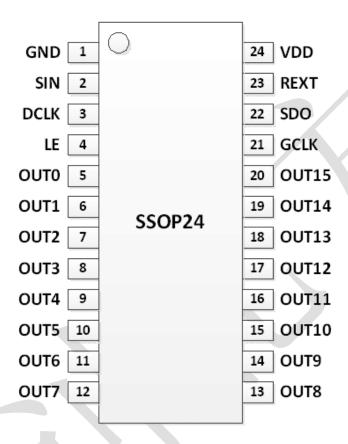

 \overline{OE} (min):20ns@V_{DD}=5V

- Data transfer frequency: f_{MAX}=35MHz(Max)
- ♦ Power supply voltage: V_{DD}=3.3~5V
- ♦ Operating Temperature: –40°C to +85°C
- Output current equation

$$Iout = \frac{9.23}{R_{EVI}}$$

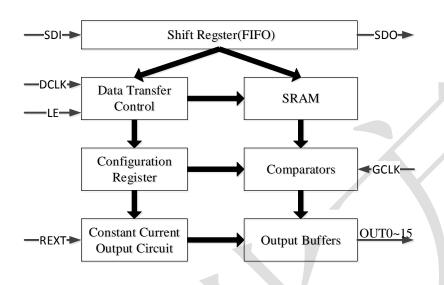
- Pre-charge for ghosting reduction
- ♦ LED open detection
- Enhanced Circuit for Caterpillar Cancelling
- ♦ Low-gray scale enhancement
- Integrating LED protection circuit

Package

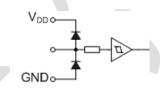


ICN2053

Pin Configuration

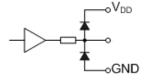

SS0P24-P-150-0. 635

ICN2053(SSOP24)					
Pin No.	Pin Name	Function			
1	GND	Power Ground			
2	SIN	Serial data input			
3	DCLK	Clock input terminal for data shift and command information			
4	LE	Data transfer command input pin			
5~20	OUTO ~ OUT15	Constant current output			
21	GCLK	The reference clock input pin for PWM gray scale control			
22	SDO	Serial data output			
23	REXT	Constant-current value setting .Connection to an external resistor to GND			
24	VDD	Power-supply voltage			



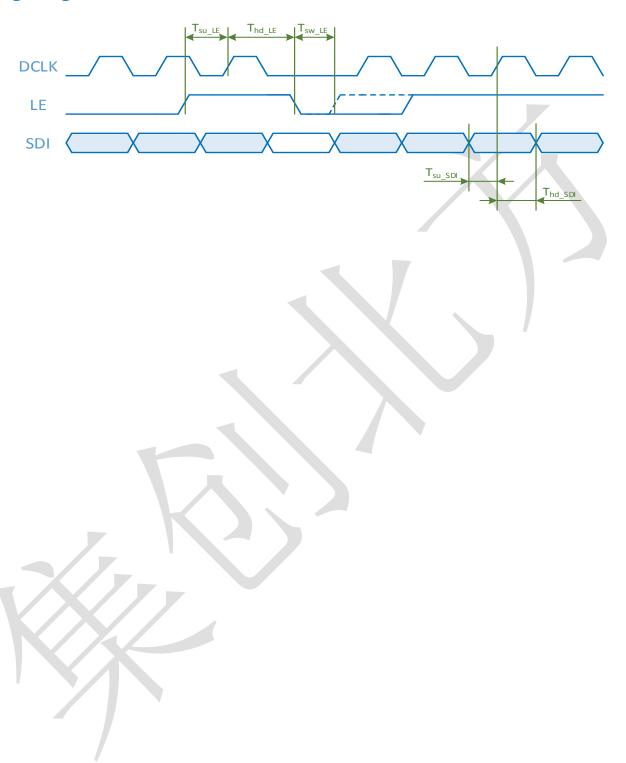
ICN2053 Block Diagram


I/O Equivalent Circuits


1. GCLK, SDI, LE

2. DCLK

Control Command


Command Name	Number of DCLK Rising Edge when LE is High	Description	
DATA_LATCH	1	Transfer Serial data to buffers	
WR_DBG	2	Write Debug Register	
VSYNC	3	Vertical Synchronal signal	
WR_CFG1	4	Write Configuration Register 1	
RD_CFG1	5	Read Configuration Register 1	
WR_CFG2	6	Write Configuration Register 2	
RD_CFG2	7	Read Configuration Register 2	
WR_CFG3	8	Write Configuration Register 3	
RD_CFG3	9	Read Configuration Register 3	
WR_CFG4	10	Write Configuration Register 4	
RD_CFG4	11	Read Configuration Register 4	
EN_OP	12	Enable All Output Channels	
DIS_OP	13	Disable All Output Channels	
PRE_ACT	14	Pre-Active command	

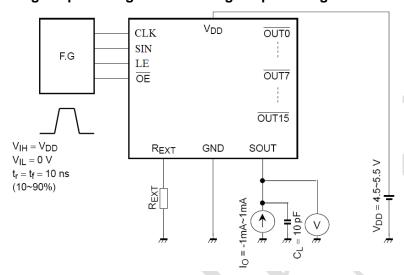
Data Transfer Order

Data Order	Line	Channel			
1		Channel 15 (OUT15)			
2	Line 1	Channel 14 (OUT14)			
.,					
16	1	Channel 0 (OUT0)			
17		Channel 15 (OUT15)			
18	Line 2	Channel 14 (OUT14)			
32		Channel 0 (OUT0)			
497		Channel 15 (OUT15)			
498	Line 32	Channel 14 (OUT14)			
	LINE 32				
512		Channel 0 (OUT0)			

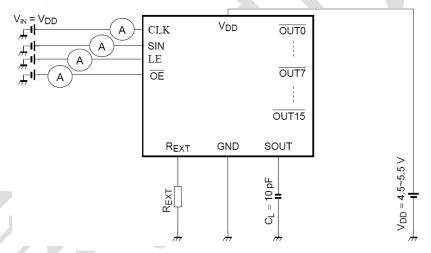
Timing Diagram

Maximum Rating (Ta=25℃)

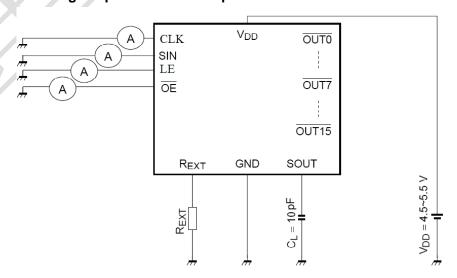
Characteristics		Symbol	Rating	Unit
Supply Voltage		V_{DD}	0~6.0	V
Output Current		Io	25	mA
Input Voltage	Input Voltage		-0.4~V _{DD} +0.4	V
Output voltage	Output voltage		11V	
Clock Frequency		F _{CLK}	35	MHz
GND Terminal Current	GND Terminal Current		+1000	mA
Power Dissipation (On PCB, 25°C)	DN-type	P _D	3.19	W
Thermal Resistance DN-type		$R_{th(j-a)}$	39.15	°C/W
Operating Temperature		T_{opr}	-40 ~ 85	$^{\circ}$ C
Storage Temperature		T _{stg}	-55 ~ 150	$^{\circ}$


Electrical Characteristics (Unless otherwise specified, V_{DD} =4.5~5.5V, T_a =25℃)

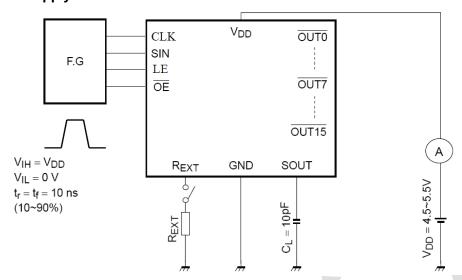
Characteristics	Symbol	Test circuit	Test Conditions	Min	Тур	Max	Unit
High level logic output voltage	V_{OH}	_ 1	I _{OH} =-1mA, SDO	V _{DD} -0.4	-	V_{DD}	٧
Low level logic output voltage	V _{OL}	1	I _{OH} =+1mA, SDO	-	-	0.4	V
High level logic input voltage	V _{IH}		0.7*V _{DD}	-	V_{DD}	V	
Low level logic input voltage	V_{IL}	3	GND	-	0.3*V _{DD}	V	
High level logic input current	I _{IH}	2	V _{IN} =V _{DD} , SDI,CLK,LE,GCLK	-	-	1	μΑ
Low level logic input current	I _{IL}	1	V _{IN} =GND SDI,CLK,LE,GCLK	-1	-	-	μΑ
Down auguly augrant	I _{DD1}	4	Rext=Open, Out off	-	4.5	6.0	mA
Power supply current	I _{DD2}	4	Rext=1.24KΩ, Out off	-	6.0	7.0	mA
Constant current error	Δl _O	5	0.5mA~25mA	-	±1.0	±2.0	%
Constant current power supply voltage regulation	%V _{DD}	5	V_{DD} =4.5~5.5V, , R_{EXT} =3k Ω , $OUT_0 \sim OUT_{15}$	-	±0.1	-	%/V
Constant current output voltage regulation	%V _{OUT}	5	V_0 =0.6~3.0V, R_{EXT} =3k Ω , OUT_0 ~ OUT_{15}	-	±0.1		%/V
Pull-down resistor	R _{DOWN}	2	DCLK	100	200	400	kΩ



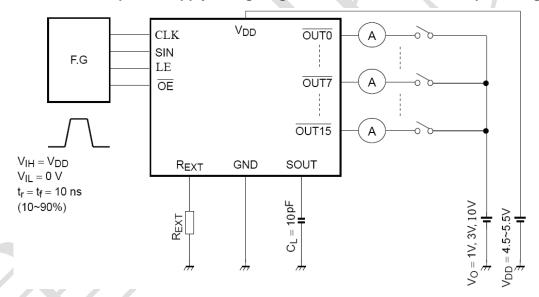
Test Circuit


Test Circuit1: High level logic input voltage/Low level logic input voltage

Test Circuit2: High level logic input current/Pull-down resistor

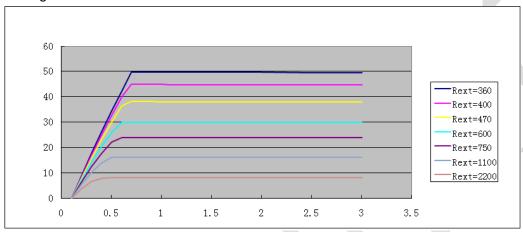


Test Circuit3: Low level logic input current/Pull-up resistor



Test Circuit4: Power supply current

Test Circuit5: Constant current output/Output OFF leak current/Constant current error Constant current power supply voltage regulation/Constant current output voltage regulation



Application Information

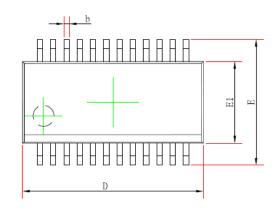
ICN2053 exploits current precision controlling technology, and provides nearly no current variations from channel to channel and from IC to IC.

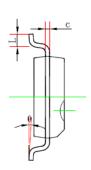
- 1) The maximum current variation between channels is less than ±2.0%, and that between ICs<±2.0%.
- 2) The current characteristic of output stage is flat, and can be kept constant regardless of the variations of LED forward voltage.

Setting Output Current

The output current (lout) of ICN2053 is set by an external resistor, Rext. The relationship between lout and Rext is:

 $V_{R-EXT}=1.232V$;


I out= $(V_{R-EXT}/Rext) *7.5$



Package Outline

SS0P24-P-150-0. 635

SSOP24 (150mil) PACKAGE OUTLINE DIMENSIONS



Symbol	Dimensions In	Millimeters	Dimensions In Inches		
Symoor	Min	Max	Min	Max	
A		1.750		0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1. 250		0.049		
b	0. 203	0.305	0.008	0.012	
c	0.102	0. 254	0.004	0.010	
D	8.450	8.850	0.333	0.348	
E1	3.800	4.000	0.150	0. 157	
E	5.800	6. 200	0. 228	0.244	
e	0.635 (BSC)		0.025	(BSC)	
L	0.400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

Product Ordering Information

Product number	Package (Pb-Free)	Weight (mg)
ICN2053BP	SS0P24-0. 635	130

Important information

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright ©2015, Chipone Technology (Beijing) Co., Ltd.