

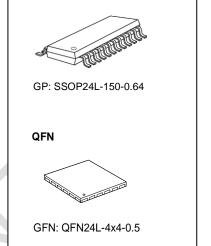
16-Channel PWM Constant Current LED Driver for 1:8 Time-Multiplexing Applications

Features

- 3.0V-5.5V supply voltage
- 16 constant current output channels
- Constant output current range:
 - 2~45mA @ 5V supply voltage
 - 2~30mA @ 3.3V supply voltage
- Excellent output current accuracy:

Between channels:: <±2.5% (Max.)

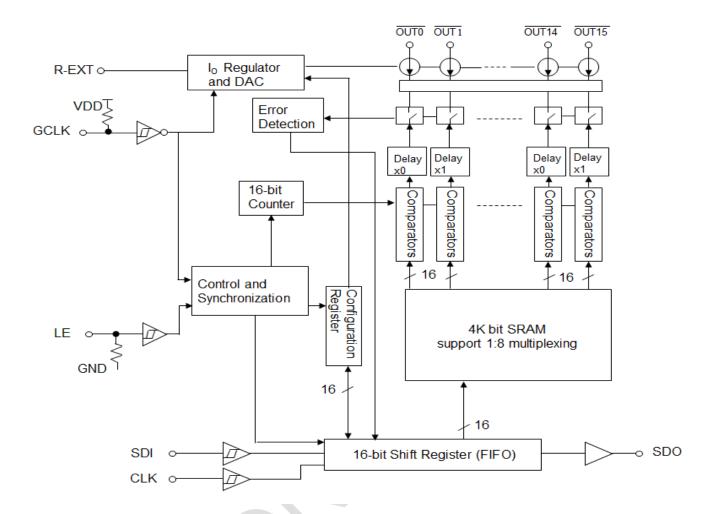
Between ICs: <±3%(Max.)

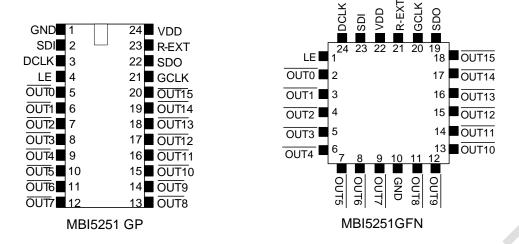

- Built-in 4K-bit SRAM to support time-multiplexing for 1 ~ 8 scans
- 16/15/14/13-bit color depth PWM control to improve visual refresh rate
- 6-bit current gain, 12.5%~100%
- LED failure isolation
 - -LED failure induced cross elimination
- LED open detection
- Integrating ghost elimination circuit
- Intelligent power saving modes
 - Dynamic power saving (when all frame data is zero)
 - Dynamic+ power saving (when displaying dynamic video with various brightness)
- GCLK multiplier technology
- Maximum DCLK frequency: 30MHz

Product Description

MBI5251 is designed for LED video applications using internal Pulse Width Modulation (PWM) control with selectable 16/15/14/13-bit color depth. MBI5251 features a 16-bit shift register which converts serial input data into each pixel's gray scale of the output port. Sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs with a wide range of V_F variations. The output current can be preset through an external resistor. The innovative architecture with embedded SRAM is designed to support up to 1:8 time-multiplexing applications. Users only need to send the whole frame data once and to store in the embedded SRAM of the LED driver, instead of sending every time when the scan line is changed. It helps to save the data bandwidth and to achieve high grayscale with very low data clock rate. With scan-type Scrambled-PWM (S-PWM) technology, MBI5251 enhances PWM by scrambling the "on" time of each scan line into several "on" periods and sequentially drives each scan line for a short "on" period. The enhancement equivalently increases the visual refresh rate of scan-type LED displays. In addition, the innovative GCLK multiplier technique doubles visual refresh rate.

MBI5251 drives the corresponding LEDs to the brightness specified by image data. With MBI5251, all output channels can be built with 16-bit color depth (65,536 gray scales). When building a 16-bit color depth video, S-PWM technology reduces the flickers and improves the image fidelity.

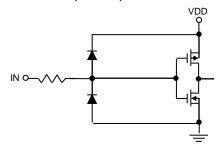

Through compulsory error detection, MBI5251 detects individual LED for open-circuit errors without extra


Shrink SOP

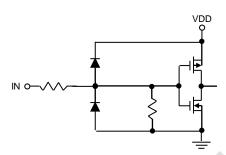
components. MBI5251 equipped an innovative cross elimination function, and it solves the cross phenomenon induced by failure LEDs. Besides, integrated ghost elimination circuit eases the ghost problems.

Block Diagram

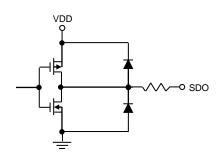
Pin Configuration



Terminal Description


Pin Name	Function
GND	Ground terminal for control logic and current sink
SDI	Serial-data input to the shift register
DCLK	Clock input terminal used to shift data on rising edge and carries command information when LE is asserted.
LE	Data strobe terminal and controlling command with DCLK
OUTO ~ OUT15	Constant current output terminals
GCLK	Gray scale clock terminal Clock input for gray scale. The gray scale display is counted by gray scale clock compared with input data.
SDO	Serial-data output to the receiver-end SDI of next LED driver
R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
VDD	3.3V/5V supply voltage terminal

Equivalent Circuits of Inputs and Outputs


GCLK, DCLK, SDI terminal

LE Terminal

SDO Terminal

Maximum Rating

Charac	eteristic	Symbol	Rating	Unit
Supply Voltage		V _{DD}	0~5.5	V
Input Pin Voltage (SDI, DCLK	, GCLK, LE)	V _{IN}	-0.4~V _{DD} +0.4	V
Sustaining Voltage at OUT Po	ort	V _{DS}	-0.5~7	V
Output Current		Іоит	+45	mA
GND Terminal Current		I _{GND}	360	mA
Power Dissipation	GP Type		TBD	10/
(On 4 Layer PCB, Ta=25°C)*	GFN Type	P _D	TBD	W
Thermal Resistance	GP Type	D	TBD	°C/W
(On 4 Layer PCB, Ta=25°C)*	GFN Type	$R_{th(j-a)}$	TBD	C/VV
Junction Temperature		T _j ,max	150**	°C
Operating Ambient Temperatu	ıre	Topr	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
ESD Rating	Human Body Mode (MIL-STD-883H Method 3015.8)	НВМ	TBD	-
	Machine Mode (ANSI/ ESD S5.2-2009)	MM	TBD	-

^{*}The PCB size is 76.2mm*114.3mm in simulation. Please refer to JEDEC JESD51.

Note: The performance of thermal dissipation is strongly related to the size of thermal pad, thickness and layer numbers of the PCB. The empirical thermal resistance may be different from simulative value. User should plan for expected thermal dissipation performance by selecting package and arranging layout of the PCB to maximize the capability.

^{**}Operation at the maximum rating for extended periods may reduce the device reliability; therefore, the suggested junction temperature of the device is under 125°C.

Electrical Characteristics (V_{DD}=5.0V, Ta=25°C)

	Characteris	tics	Symbol	Condition	on	Min.	Тур.	Max.	Unit
Supply '	Voltage		V_{DD}	-		4.5	5.0	5.5	V
Sustaini	ing Voltage a	t OUT Ports	V _{DS}	OUT0 ~ OUT15		-	-	7.0	V
			Гоит	Refer to "Test Circuit Characteristics"	t for Electrical	2	-	45	mA
Output (Current		Іон	SDO		-	-	-1.0	mΑ
			loL	SDO	-	-	1.0	mA	
I	alta sia	"H" level	Vін	Ta=-40~85°C		0.7xV _{DD}	-	V _{DD}	V
Input Vo	oitage	"L" level	VIL	Ta=-40~85°C		GND		0.3xV _{DD}	V
Output I	Leakage Curr	ent	Іон	V _{DS} =17.0V			-	0.5	μA
0 . 1 1)	/-It	000	Vон	I _{OH} =-1.0mA	4.6	-	-	V	
Output Voltage SDO		SDO	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V
Current Skew (Channel)		dl _{OUT1}	I _{OUT} =2mA V _{DS} =1.0V	R _{ext} =7.2KΩ	-	±1.5	±2.5	%	
Current	Skew (IC)		dl _{OUT2}	I _{OUT} =2mA V _{DS} =1.0V	R _{ext} =7.2KΩ	-	±1.5	±3.0	%
Output '	Current vs. Voltage Regu	lation*	%/dV _{DS}	V _{DS} within 1.0V and 3.0V		-	±0.1	±0.5	%/V
	Current vs. Voltage Regu	ılation*	%/dV _{DD}	V _{DD} within 4.5V and	5.5V	-	±1.0	±2.0	% / V
LED Op	en Detection	Threshold	V _{OD,ТН}	default		-	0.5	-	V
Pull-dov	vn Resistor		R _{IN} (down)	LE		250	450	800	ΚΩ
	"Off"		I _{DD} (off) 1	R _{ext} =Open, OUT0 ~	OUT15 =Off	-	10.2		
	(SDI=DCLK= =0Hz)	=GCLK	I _{DD} (off) 2	$R_{ext}=7.2K\Omega$, $\overline{OUT0}$ ~	~ OUT15 =Off	-	12.2		
Supply Current	,		I _{DD} (off) 3	R _{ext} =360Ω, OUT0 ~	OUT15 =Off	-	14.2		mA
	"On"		I _{DD} (on) 2	$R_{ext}=7.2K\Omega$, $\overline{OUT0}$ ~	- OUT15 =On	-	12.2		
	(GCLK=20M	Hz)	I _{DD} (on) 3	R _{ext} =320Ω, OUT0 ~	OUT15 =On	-	14.2		

^{*}One channel on.

Electrical Characteristics (V_{DD}=3.3V, Ta=25°C)

	Characteris	stics	Symbol	Cond	dition	Min.	Тур.	Max.	Unit
Supply	Voltage		V_{DD}		-	3.0	3.3	3.6	V
Sustain	ing Voltage a	at OUT Ports	V _{DS}	OUT0 ~ OUT15	-	-	-	7.0	V
			Гоит	Refer to "Test Cir Characteristics"	cuit for Electrical	2	1	30	mA
Output	Current		Іон	SDO		-	-	-1.0	mΑ
			loL	SDO		-	-	1.0	mΑ
I	-14	"H" level	V _{IH}	Ta=-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V
Input Vo	oitage	"L" level	V _{IL}	Ta=-40~85°C		GND	-	$0.3xV_{DD}$	V
Output	Leakage Cui	rent	I _{OH}	V _{DS} =17.0V		-	-	0.5	μA
0.4	\	000	Vон	I _{OH} =-1.0mA	2.9	-	-	V	
Output Voltage SDO		SDO	VoL	I _{OL} =+1.0mA	-	-	0.4	V	
Current Skew (Channel)		dl _{OUT1}	I _{OUT} =0.5mA V _{DS} =1.0V	R _{ext} =7.2KΩ		±1.5	±2.5	%	
Current	Skew (IC)		dl _{OUT2}	I _{OUT} =0.5mA V _{DS} =1.0V	R _{ext} =7.2KΩ	-	±1.5	±3.0	%
	Current vs. Voltage Reg	ulation*	%/dV _{DS}	V _{DS} within 1.0V and 3.0V		-	±0.1	±0.3	%/V
	Current vs. Voltage Reg	ulation*	%/dV _{DD}	V _{DD} within 3.0V a	nd 3.6V	-	±1.0	±2.0	%/V
LED Op	en Detection	n Threshold	$V_{\text{OD,TH}}$	default		-	0.5	-	V
Pull-dov	wn Resistor		R _{IN} (down)	LE		250	450	800	ΚΩ
			I _{DD} (off) 1	R _{ext} =Open, OUTO	OUT15 =Off	-	9.7		
	"Off" (SDI=DCLK	=GCLK=0Hz)	I _{DD} (off) 2	R _{ext} =7.2KΩ, OUT	0 ~ OUT15 =Off	-	11.7		^
Supply Current	`	302. (0.12)	I _{DD} (off) 3	R _{ext} =320Ω, OUTO	0 ~ OUT15 =Off		13.7		mA
	"On"		I _{DD} (on) 2	R _{ext} =7.2KΩ, OUT		-	7.4		
	(GCLK=20N	MHz)	I _{DD} (on) 3	R _{ext} =320Ω, OUTO	OUT15 =On		13.7		

^{*}One channel on.

Test Circuit for Electrical Characteristics

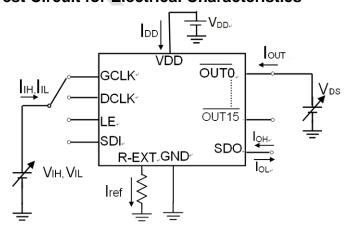


Figure 2

Switching Characteristics (V_{DD}=5.0V, Ta=25°C)

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
	SDI - DCLK ↑	t _{SU0}		5	-	-	ns
Out on The c	LE↑ - DCLK↑	t _{SU1}		8	-	-	ns
Setup Time	LE ↓ (Vsync) – GCLK	t _{SU2}		1200	-	-	ns
	LE↓ - DCLK↑	t _{SU3}		50	-	-	ns
	DCLK↑ - SDI	t _{H0}		6	-	-	ns
Hold Time	DCLK↑ - LE	t _{H1}		8	-	-	ns
	GCLK – LE ↑ (Vsync)	t _{H2}		300	-	-	ns
	DCLK - SDO	t _{PD0}		-	22	25	ns
Propagation Delay Time	GCLK - OUT2n **	t _{PD1}	V_{DD} =5.0 V_{IH} = V_{DD}	-	35	-	ns
Time	LE – SDO		VIH= V DD VIL=GND		30	40	ns
Pulse Width			$R_{ext}=1.4K\Omega$ $V_{DS}=1V$	15	-	-	ns
Command to Comman	d	Тсс	R _L =300Ω	50	-	-	ns
Data Clock Frequency		F _{DCLK}	C _L =10pF C ₁ =100nF	-	-	30	MHz
Gray Scale Clock Freq	uency***	FGCLK	C ₂ =10µF	-	-	33	MHz
GCLK frequency (when GCLK multiplier	is enabled)	FGCLK	C _{SDO} =10pF V _{LED} =4.0V	-	-	16.6	MHz
Min Clock(GCLK/ DCL	K) Pulse Width****	t _{W(CLK)}		12	-	-	ns
Ratio of (GCLK freq)/ (DCLK freq)	R _{(GCLK/DCL} K)		20	-	-	%
Compulsory Error Detection Operation time*****		terr-c		700	-	-	ns
Output Rise Time of O	utput Ports	toR		-	15	20	ns
Output Fall Time of Ou	tput Ports	t _{OF}		-	15	20	ns
Output Rise Time of O	utput Ports (Slow)	t _{OR}			30	40	ns
Output Fall Time of Ou	tput Ports (Slow)	tof			30	40	ns
Dead Time		t _{dth}		300	-	-	ns
Dead Time (Low state)		t _{dtl}		1200	-	-	ns

^{*}Output waveforms have good uniformity among channels.

^{**} Refer to the Timing Waveform, where n=0, 1, 2, 3, 4, 5, 6, 7.

^{***}In timing of "configuration read", the next DCLK rising edge should be t_{PD2} after LE's falling edge.

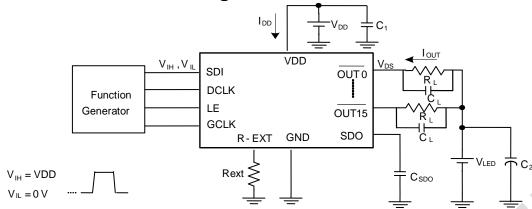
^{****}The Gray Scale Clock period must be 50% duty cycle when the function of GCLK multiplier is enabled.

^{*****}Users have to leave more time than the maximum error detection time for the error detection.

Switching Characteristics (V_{DD}=3.3V, Ta=25°C)

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
	SDI - DCLK ↑	t _{SU0}		7	-	-	ns
o . —	LE – DCLK ↑	t _{SU1}		10	-	-	ns
Setup Time	LE ↓ (Vsync) – GCLK	t _{SU2}		1200	-	-	ns
	LE ↓ - DCLK↑	t _{SU3}		52	-	-	ns
	DCLK↑ - SDI	t _{H0}		8	-	-	ns
Hold Time	DCLK↑ - LE	t _{H1}		10	-	-	ns
	GCLK – LE ↓ (Vsync)	t _{H2}		300	-	-	ns
	DCLK - SDO	t _{PD0}	V _{DD} =3.3V	-	25		ns
Propagation Delay Time	GCLK -OUT2n*	t _{PD1}	V _{IH} =V _{DD} V _{IL} =GND	-	45	-	ns
	LE – SDO	t _{PD2} ***	$R_{ext}=1.4K\Omega$ $V_{DS}=1V$	_	40		ns
Pulse Width	LE	t _{w(LE)}	$R_L=300\Omega$	16	-	-	ns
Command to Comma	ind	tcc	C _L =10pF C ₁ =100nF	52	-	-	ns
Data Clock Frequenc	у	F _{DCLK}	C ₂ =10µF	-	-	25	MHz
Gray Scale Clock Fre	quency****	FGCLK	C _{SDO} =10pF V _{LED} =4.0V	-	-	20	MHz
GCLK frequency (when GCLK multiplie	er is enabled)	FGCLK		-	-	10	MHz
Min Clock(GCLK/ DC	LK) Pulse Width****	t _{W(CLK)}		13	-	-	ns
Ratio of (GCLK freq)/	R _{(GCLK/DCL}		20	-	-	%	
Compulsory Error De	tection Operation time*****	terr-c		700	-	-	ns
Output Rise Time of (Output Ports	toR		-	25	35	ns
Output Fall Time of O	Output Ports	t _{OF}		-	25	35	ns
Dead Time		tdth		300	-	-	ns
Dead Time (Low state	e)	tdtl		1200	-	-	ns

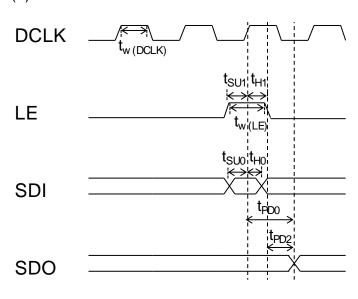
^{*}Output waveforms have good uniformity among channels.

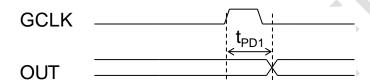

^{**} Refer to the Timing Waveform, where n=0, 1, 2, 3, 4, 5, 6, 7.

^{***}In timing of "configuration read", the next DCLK rising edge should be tPD2 after LE's falling edge.

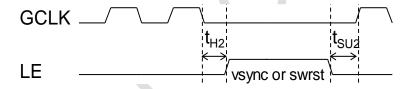
^{****}The Gray Scale Clock period must be 50% duty cycle when the function of GCLK multiplier is enabled.

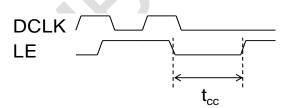
^{******}Users have to leave more time than the maximum error detection time for the error detection.

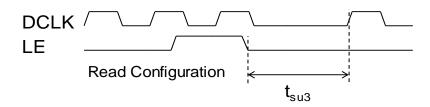

Test Circuit for Switching Characteristics

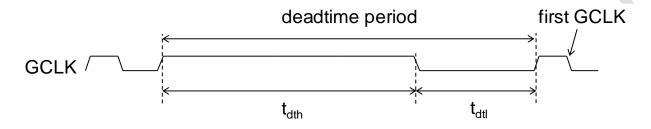

Timing Waveform

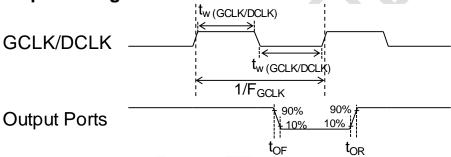
Control timing


(1)


(2)


(3)


(4)


(5)

(6)

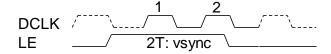
Control Command

	Sig	nals Combination	Description
Command Name	LE	Number of DCLK Rising Edge when LE is asserted	Action of Command
Stop Compulsory Error detection	High	1	Stop compulsory LED open detection
Data Latch	High	1	Serial data are transferred to the input data buffers.
VSYNC	High	2	Vertical Synchronal signal. Displaying frame will be updated to output channel
Write Configuration 1*	High	4	Serial data are written to the configuration register 1
Read Configuration 1	High	5	Serial data are read from the configuration register 1
Start Compulsory Error detection	High	7	Start compulsory LED open detection
Write Configuration 2*	High	8	Serial data are written to the configuration register 2
Read Configuration 2	High	9	Serial data are read from the configuration register 2
Software Reset	High	10	Reset the behavior of MBI5251 except the value of configuration registers.
Write Configuration 5*	High	13	Serial data are written to the configuration register 5
Pre-Active	High	14	Pre-Active command needs to be sent before "Write Configuration" command
Read Configuration 5	High	21	Serial data are read from the configuration register 5

^{*}Those commands can only be activated after "Confirm command"; otherwise, they will be invalid.

Note: When the power is on, Vsync command will be valid only after 16 times of "Data Latch" commands that have been sent in advance.

Waveform of Commands


The following figures show the waveforms of commands.

Data Latch

Note: GCLK can not stop during this command, and GCLK_freq / DCLK_freq >= 1/5

Data Latch command is used to latch the 16-bit shift register from SDI to internal SRAM buffer. When this command is received, the last 16 bits data before the falling edge of LE will be latched into SRAM, as shown in the above waveform, and MSB bit needs to be sent first.

Vertical Sync (VSYNC)

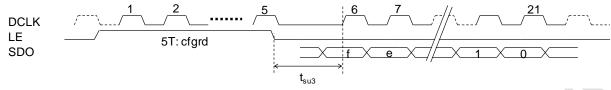
"VSYNC" command is used to update frame data on output channels ($\overline{\text{OUT0}} \sim \overline{\text{OUT15}}$). There are some timing limitations between signal "LE" and "GCLK"; and please refer to the section of "Vsync Command Operation" for details.

Write Configuration

Write configuration (cfgwr) command is used to program the configuration register of MBI5251. The "Pre-Active" command must be sent in advance. When this command is received, the last 16 bits data before the falling edge of LE will be latched into configuration register, as shown in the below waveforms, and MSB bit needs to be sent first.

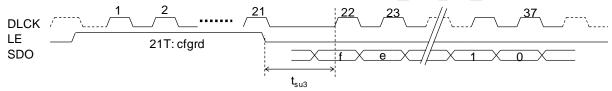
Write Configuration 1

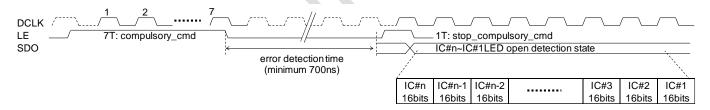
Write Configuration 2

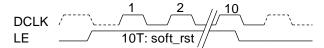

Write Configuration 5


Read Configuration

Read configuration (cfgrd) command is used to read the configuration register of MBI5251. When this command is received, the 16-bit data of configuration register will be shifted out from SDO pin, as shown in the below waveforms, and MSB bit will be shifted out first.


Read Configuration 1


Read Configuration 2


Read Configuration 5

Compulsory error detection

Software Reset

Software reset command makes MBI5251 go back to the initial state except configuration register value. After this command is received, the output channels will be turned off and will display again with last gray-scale value after new "Vsync" command is received.

Definition of Configuration Register 1

MSB															LSB
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
e.g. [Default	Value													
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1

Bit	Attribute	Definition	Value	Function
F	Read/Write	Reserved	0 (Default)	Reserved
_	D a a dAA/sita	PWM counting	0 (Default)	PWM is forward counting
E	Read/Write	mode	1	PWM is backward counting
D	Read/Write	LED failure induced cross	0 (Default)	Disable
		elimination	1	Enable
C~B	Read/Write	Reserved	00 (Default)	Reserved
A~8	Read/Write	Number of scan lines	000 001 010 011 (Default) ~ 111	000: 1 lines 001: 2 lines 010: 3 lines 011: 4 lines (Default) 100: 5 lines 101: 6 lines 110: 7 lines 111: 8 lines
7~6	Read/Write	S-PWM mode	00 (Default) 01 10	The 65536 GCLK (16-bit) PWM cycle is divided into 64 sections, each section has 1024 GCLK. The 32768 GCLK (15-bit) PWM cycle is divided into 32 sections, each section has 1024 GCLK. User still sends 16bit data with 1 bit 0 in LSB bits. Ex., {15'h1234, 1'h0}. The 16384 GCLK (14-bit) PWM cycle is divided into 32 sections, each section has 512 GCLK. User still sends 16bit data with 2 bit 0 in LSB bits. Ex., {14'h1234, 2'h0}. The 8192 GCLK (13-bit) PWM cycle is divided into 16 sections, each section has 512 GCLK. User still sends 16bit data with 3 bit 0 in LSB bits. Ex., {13'h1234, 3'h0}.
5~0	Read/Write	Current Gain	000,000 ~ 111,111 (Default)	[000,000] 12.5% ~ [111,111] 100%

Default setting of configuration register is 16'h033f

Definition of Configuration Register 2

MSB															LSB
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
e.g. D	efault '	Value													
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

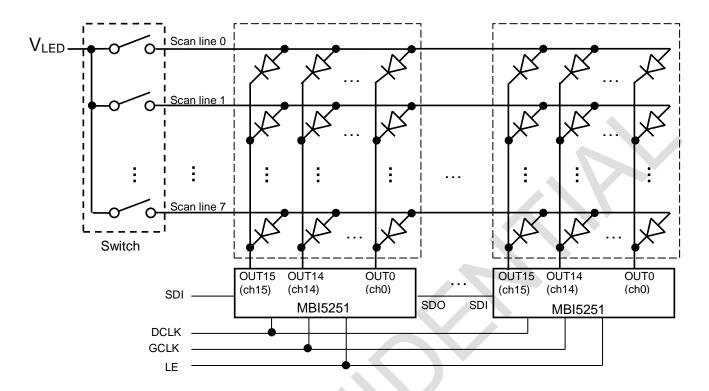
Bit	Attribute	Definition	Value	Function
15	Read/Write	Reserved	0 (Default)	Reserved
13	iteau/vviite	Neserveu	1	Neserved
14	Read/Write	Reserved	0 (Default)	Reserved
14	Read/Wille	Reserved	1	Reserved
13~11	Read/Write	Reserved	000 (Default)	Reserved
10	Read/Write	Double refresh	0 (Default)	Disable
10	inead/vviile	Double leffesii	1	Enable
9	Read/Write	GCLK multiplier	0 (Default)	Disable
9	Read/Wille	GCLK multiplier	1	Enable
8~5	Read/Write	Reserved	0000 (Default)	Reserved
4~0	Read/Write	Reserved	00000 (Default)	Reserved

Default setting of configuration register is 16'h0000

Definition of Configuration Register 5

MSB															LSB
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

e.g. Default Value

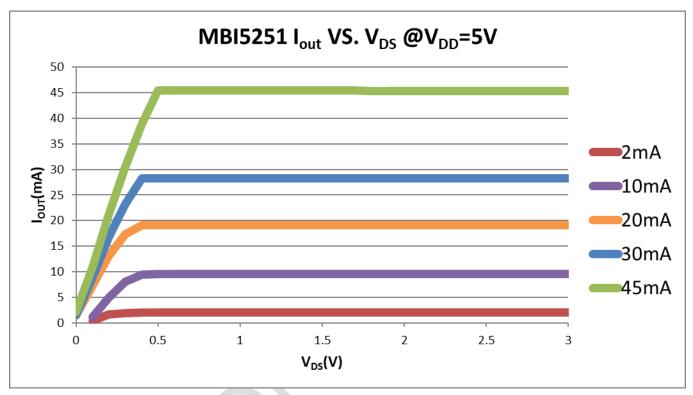

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	1

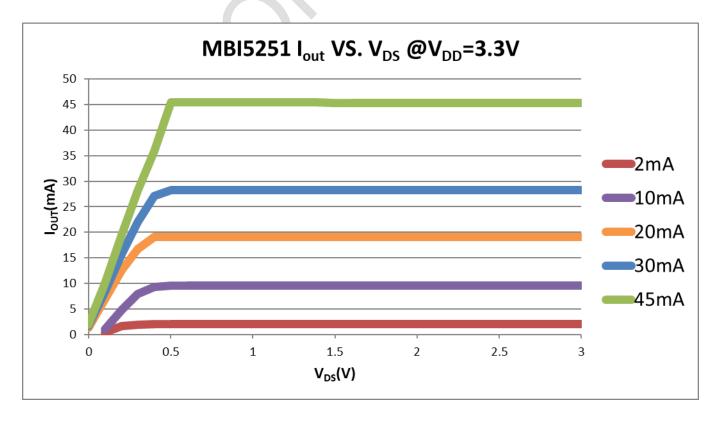
Bit	Attribute	Definition	Value	Function
15~8	Read/Write	Reserved	00000001 (Default)	Reserved
7~5	Read/Write	Open Error detection voltage threshold	000 (Default)	[000] level 0 ~ [111] level 7
4~0	Read/Write	Lower ghost elimination	11111 (Default)	[00000] level 0 ~ [11111] level 7

Default setting of configuration register is 16'h011f

Operation Principles

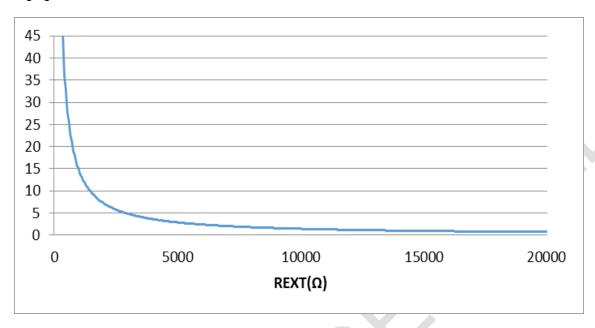
Scan type application structure




The above figure shows the suggested application structure of scan type scheme with 8 scan lines. The gray-scale data are sent by pin "SDI and SDO" with the commands formed by pin "LE" and "DCLK". The output ports from 16 channels ($\overline{\text{OUT0}} \sim \overline{\text{OUT15}}$) will output the PWM result for each scan line at different time, so there must be one "Switch" to multiplex for each scan line. The switching sequence and method and the command usage is described in the application note.

Constant Current

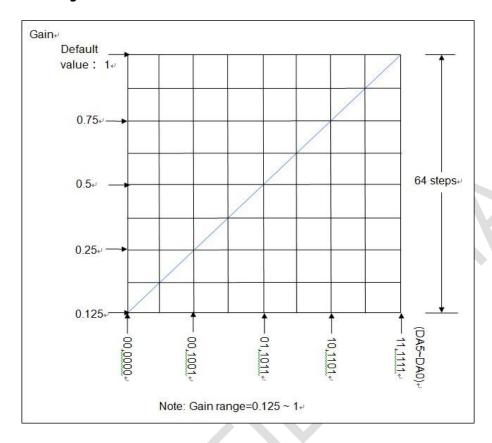
In LED display application, MBI5251 provides nearly no variation in current from channel to channel and from IC to IC. This can be achieved by:


- 1) The maximuml current variation between channels is less than 2.5%, and that between ICs is less than ±3%
- 2) In addition, the current characteristic of output stage is flat and user can refer to the figure below. The output current can be kept constant regardless of the variations of LED forward voltages (V_F). This guarantees LED to be performed on the same brightness as user's specification.

Setting Output Current

The output current (I_{OUT}) is set by an external resistor, R_{ext} . The default relationship between I_{OUT} and R_{ext} is shown in the following figure.

Also, the output current can be calculated from the equation:


 V_{R-EXT} =0.61Volt

 $I_{OUT} = (V_{R-EXT}/R_{ext}) \times G \times 24$

Whereas R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is its voltage. G is the digital current gain, which is set by the bit5 to bit0 of the configuration register. The default value of G is 1. For example, the output current is about 20mA when Rext=700 Ω if G is set to default value 1.

The formula and setting for G are described in next section.

Current Gain Adjustment

The 6 bits (bit 5~bit 0) of the configuration register set the gain of output current, i.e., G. As total 6-bit in number, i.e., ranging from 6'b000000 to 6'b111111, these bits allow user to set the output current gain up to 64 levels. These bits can be further defined inside configuration register as follows:

F	E	I	D	О	В	Α	9	8	7	6	5	4	3	2	1	0
-	-	-	-			Ī	(1	-	-		DA5	DA4	DA3	DA2	DA1	DA0

Bit 5 to bit 0 are DA5 ~ DA0.

The relationship between these bits and current gain G is:

 $G=0.125 + (D / 63) \times 0.875$

D in the above decimal numeration can be converted to its equivalent in binary form by the following equation:

D= DA5 x 25 + DA4 x 24 + DA3 x 23 + DA2 x 22 + DA1 x 21 + DA0 x 20

In other words, these bits can be looked as 6-bit mantissa DA5~DA0

For example:

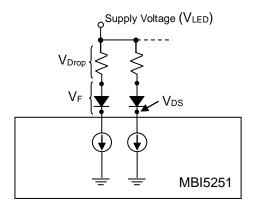
G = 0.5

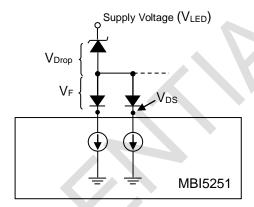
 $D = (0.5 - 0.125) / 0.875 \times 63 = 27$

D in binary form would be:

D = 27

=0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

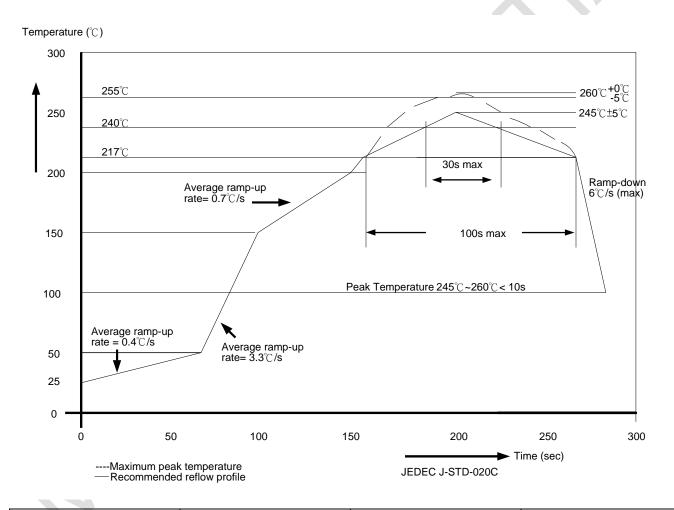

The 6 bits (bit 5~bit 0) of the configuration register are set to 6'b011011


LED Supply Voltage (VLED)

MBI5251 is designed to operate with V_{DS} ranging from 0.4V to 1.0V (depending on $I_{OUT}=2\sim45$ mA) considering the package power dissipating limits. V_{DS} may be higher enough to make P_{D} (act) $>P_{D}$ (max) when $V_{LED}=5$ V and $V_{DS}=V_{LED}-V_{F}$, in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP} .

A voltage reducer lets $V_{DS}=(V_{LED}-V_F)-V_{DROP}$.

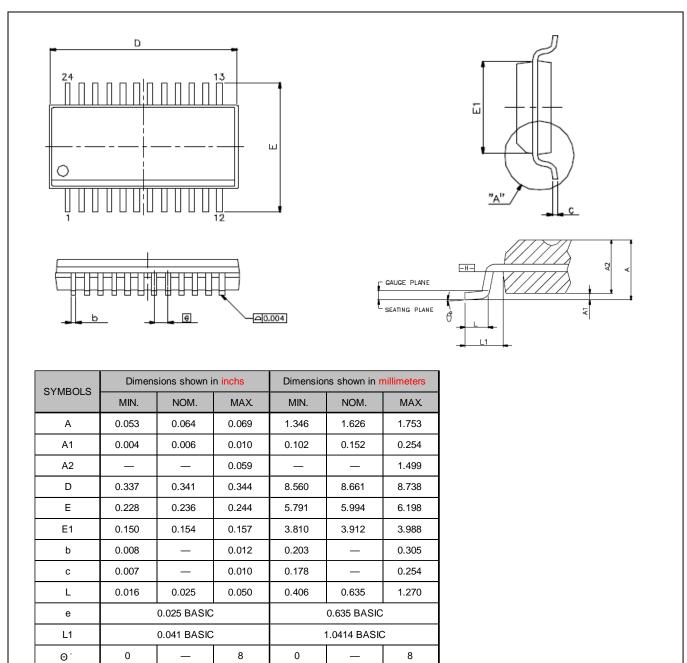
Resistors or Zener diode can be used in the applications as shown in the following figures.

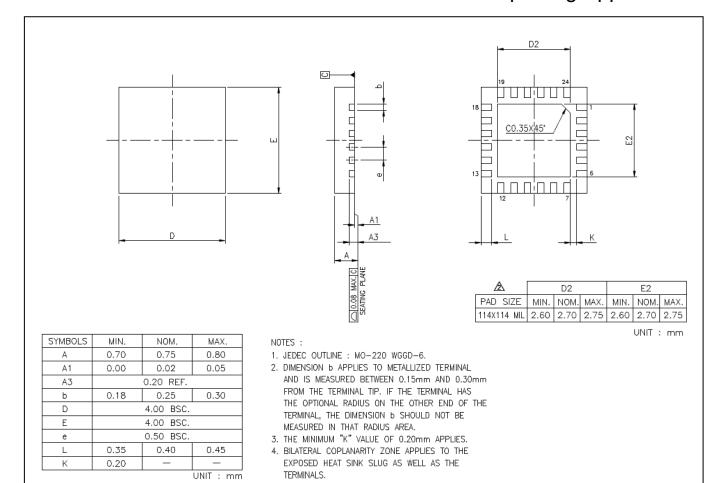

Switching Noise Reduction

LED drivers are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, refer to "Application Note for 8-bit and 16-bit LED Drivers-Overshoot".

Soldering Process of "Pb-free & Green" Package Plating*

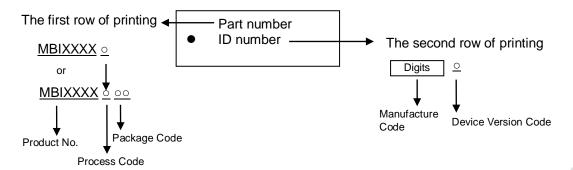
Macroblock has defined "Pb-Free & Green" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it adopts tin/lead (SnPb) solder paste, and please refer to the JEDEC J-STD-020C for the temperature of solder bath. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require from 245°C to 260°C for proper soldering on boards, referring to JEDEC J-STD-020C as shown below.


For managing MSL3 Package, it should refer to JEDEC J-STD-020C about floor life management & refer to JEDEC J-STD-033C about re-bake condition while IC's floor life exceeds MSL3 limitation.


Package Thickness	Volume mm³ <350	Volume mm³ 350-2000	Volume mm³ ≧2000
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
≧2.5mm	250 +0 °C	245 +0 °C	245 +0 °C

^{*}Note: For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

Package Outline



MBI5251GP Outline Drawing

MBI5251GFN Outline Drawing

Product Top Mark Information

Product Revision History

Advance Information Version	Devise Version Code
V0.01	Т

Product Ordering Information

Product Ordering Number*	RoHS Compliant Package Type	Weight (g)
MBI5251GP-T	SSOP24L-150-0.64	0.11
MBI5251GFN-T	QFN24L-4*4-0.5	0.0379

^{*}Please place your order with the "product ordering number" information on your purchase order (PO).

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

Related technologies applied to the product are protected by patents. All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.