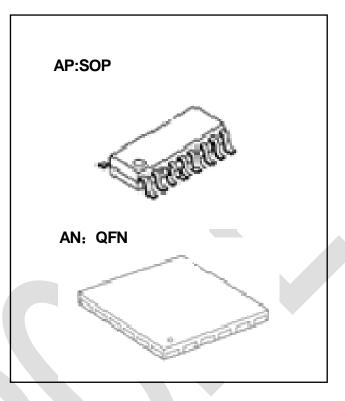


ICND2019

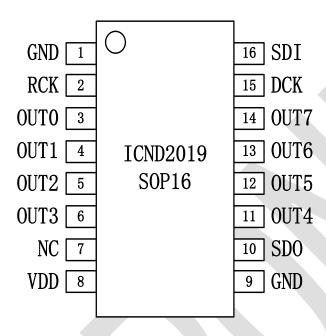
(8-Channel Power Switch for LED Display)


Description

ICND2019 is a 8-channel power switch for LED display.ICND2019 Integrated 74HC595 (8-bit serial-in, serial parallel-out shift register) and 8 Channel N-Channel Enhancement Mode MOSFET driver.

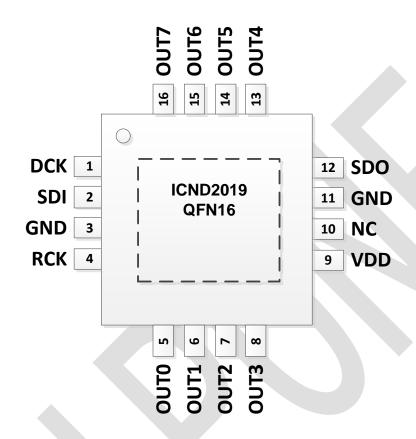
ICND2019 integrated Ghosting Reduction, Caterpillar Cancelling and LED Protection circuit.

Features


- Integrated 74HC595 (8-bit serial-in, serial parallel-out shift register)
- ♦ 8 Channel N-Channel Enhancement Mode MOSFET driver
- ♦ N-MOSTEF Rds(ON) 100 mΩ, Max output current 2.5A
- ♦ Ghosting Reduction
- ♦ Caterpillar Removal for LED Short
- ♦ LED Protection
- ♦ Max Power Dissipation <625mW @ VDD=5V & Ivdd=2.5A</p>
- ♦ Up Ghosting Level Adjustable

Pin Configuration

1 AP: SOP16

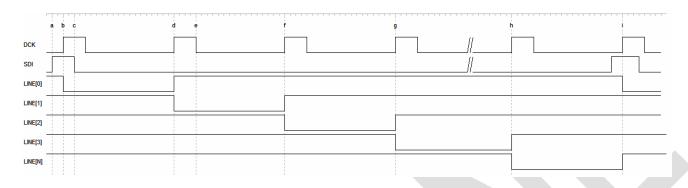

ICND2019AP (SOP16)					
Pin No	Pin Name	Function			
1, 9	GND	Power Ground			
2	RCK	Register Input			
3~6,11~14	OUT0~OUT7	Output with N-Channel Enhancement Mode MOSFET			
7	NC	Not Connected			
8	VDD	Power-Supply Voltage			
10	SDO	Serial Data Output			
15	DCK	Shift Clock Input			
16	SDI	Serial Data Input			

Note:

For control card, SDI is the C of 3-8 decoder, DCK is the A of 3-8 decoder, RCK is the B of 3-8 decoder

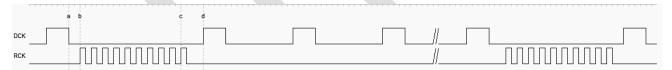
2 AN: QFN16

ICND2019AN (QFN16)				
Pin No	Pin Name	Function		
1	DCK	Shift Clock Input		
2	SDI	Serial Data Input		
3,11	GND	Power Ground		
4	RCK	Register Input		
5~8,	OUT0~OUT3,	Output with N-Channel Enhancement Mode		
13~16	OUT4~OUT7	MOSFET		
9	VDD	Power-Supply Voltage		
10	NC			
12	SDO	Serial Data Output		


Note:

For control card, SDI is the C of 3-8 decoder, DCK is the A of 3-8 decoder, RCK is the B of 3-8 decoder

Time Waveform


The rising edge of DLK is a line feed signal. After receiving the rising edge of DCLK, the data is shifted once, and the corresponding open channel is also shifted. The width of DCLK is the elimination time, so we need to do DCLK width and interface elimination parameter linkage.

Time	Function	MIN
Tb-Td	Display time, between the two DCLK rising edge	
Te-Tf	Registers configure time ,the DLCK falling edge to the next rising edge	
Td-Te	Ghost reduction time, DCLK pulse width	500ns
Ta-Tb	Setup time	20ns
Tb-Tc	Hold time	20ns

Register Setting

Ta-Td, Registers configure time, the DLCK falling edge to the next rising edge.

Register and Number of RCLK Rising Edge when DCK is High.

Reg[3:0]=RCLK-8


Time	Function	MIN
Tb-Tc	Register configuration time (Reg[3:0]=RCLK-8)	
Ta-Tb	Register configuration pre blank area	100ns
Tc-Td	Register configuration behind blank area	100ns

Register

Number of RCK Rising Edge when DCLK is Low	Model<3:2>	Mode I	Level <1:0>	Level (V)
8			00	2. 5
9	00	1	01	2. 75
10	00	l	10	3. 0
11			11	3. 25
12	01	2	00	2. 5
13			01	2. 75
14			10	3. 0
15			11	3. 25
16		3	00	2. 5
17	10		01	2. 75
18	10		10	3. 0
19			11	3. 25
20	11		00	2. 5
21		0	01	2. 75
22		U	10	3. 0
23			11	3. 25

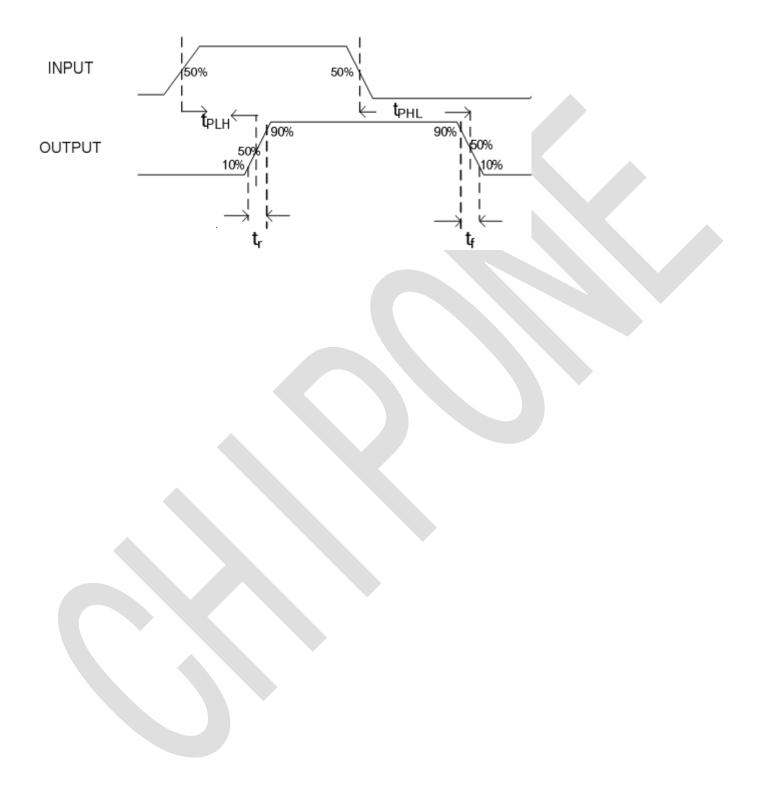
Default<3:0>=1111

Specifications

Maximum Ratings (Ta =25℃)

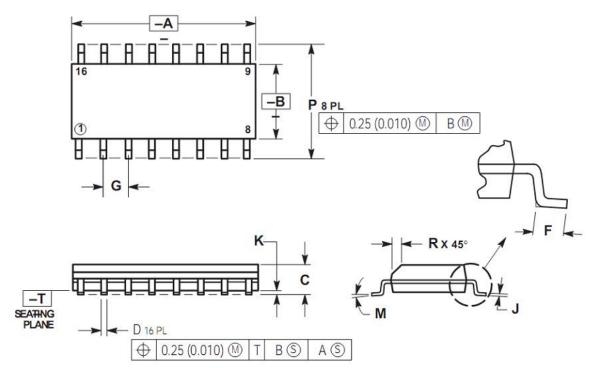
Characteristics	Symbol	Rating	Unit
Supply Voltage	VDD	-0.5 ~ + 6.0	V
Input Voltage	VIN	-0.5 ∼ VDD+0.5	V
Power Dissipation	PD	<625	mW
Operating Temperature	Topt	-40 ∼ +80	°C
Storage Temperature	Tstg	-50 ∼ + 150	°C

DC Items (Unless otherwise specified, T_a =-40 $^{\circ}$ C~85 $^{\circ}$ C)

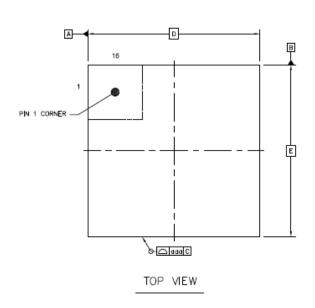

Characteristics	Symbol	Min	Тур	Max	Unit	Test Conditions
Power Supply Voltage	VDD	3.0	5.0	5.5	V	-
High Level Logic Input Voltage	VIH	3.0			V	VDD=5.0V
High Level Logic Input Voltage	VIL			2.0	V	VDD=5.0V
Quiescent Device Current	IDD		2.8		mA	VDD=5.0V
Drain Current	Юн		7	2.5	А	VDD=5.0V
Drain-Source On-State Resistance	RDS(on)		100		mΩ	VDD=5.0V

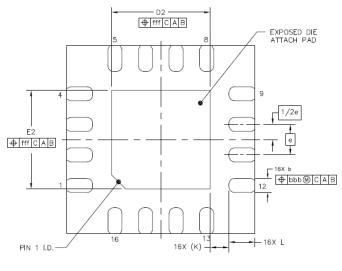
Switching Characteristics (Unless otherwise specified, T_a =25°C, V_{DD} =5.0V)

Characteristics	Symbol	Min	Тур	Max	Unit	Test conditions
Propagation	t PLH		95		nS	VDD=5.0V
Delay Time	t PHL		36		nS	CL=2nF
Output rise Time	tr		90		nS	
Output fall Time	tf		62		nS	

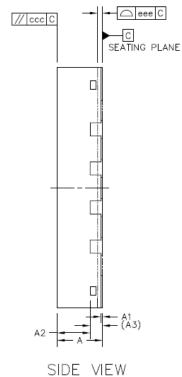

Waveform

Package Outline


S0P16



DIM	MILLI	METERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.2	7 BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
К	0.10	0.25	0.004	0.009
М	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.224
R	0.25	0.50	0.010	0.019



QFN16

BOTTOM VIEW

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		А	0.7	0.75	0.8
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.55	
L/F THICKNESS		А3		0.203 REF	
LEAD WIDTH		b	0.25	0.3	0.35
BODY SIZE	X	D		4 BSC	
BODT SIZE	Y	E	4 BSC		
LEAD PITCH		е	0.65 BSC		
EP SIZE	X	D2	2	2.1	2.2
EP SIZE	Y	E2	2	2.1	2.2
LEAD LENGTH		L	0.45	0.55	0.65
LEAD TIP TO EXPOSED	PAD EDGE	K	0.4 REF		
PACKAGE EDGE TOLERA	NCE	aaa	0.1		
MOLD FLATNESS		ccc	0.1		
COPLANARITY		eee	0.08		
LEAD OFFSET		bbb	0.1		
EXPOSED PAD OFFSET		fff	0.1		

Product Ordering Information

Product number	Package (Pb-Free)	Package (mm)	Weight (mg)
ICND2019AP	S0P16	9. 9*3. 9*1. 4	159. 5
I CND2019AN	QFN16	4*4*0. 75	

Revision History

Rev	Date	Description
1.0	2018/09	Initial Release
1. 1	2019/04	Add Register
1.2	2019/05	Add QFN Package

Important information

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright ©2015, Chipone Technology (Beijing) Co., Ltd.