

ICND2065

(16-Channel PWM Constant Current LED Sink Driver)

Description

The ICND2065 is a 16-channel PWM constant current sink LED driver for 1:64 time multiplexing applications (with 32 KB SRAM). The constant-current value of all 16 channels is set by a single external resistor.

ICND2065 converts serial input date into the gray scale of each pixel by a 16-bit shift register.ICND2065 detects individual LED open errors without extra components. ICND2065 also integrated pre-charge circuit for ghosting reduction.

The ICND2065 exploits precise current regulation technology, with both channel-to-channel error and chip-to-chip error less than $\pm 2.0\%$.

Features

- ♦ 16 constant-current output channels
- ♦ Support time-multiplexing for 1~64 scans
- Output current setting range:
 0.5~25mA×16@V_{DD}=5V constant current output
 0.5~18mA×16@V_{DD}=4.2V constant current output
- Current accuracy

Between channel :< ±2.0 %(Max.)

Between ICs :< ±2.0 % (Max.)

- ♦ 8 bit current gain: 22%~200%
- ♦ Fast response of output current:

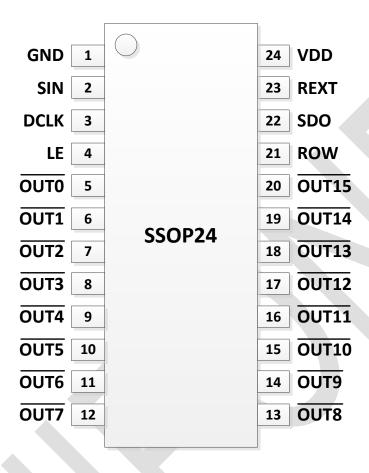
 \overline{OE} (min):20ns@V_{DD}=5V

- ♦ Data transfer frequency: f_{MAX}=35MHz(Max)
- ♦ Power supply voltage: V_{DD}=3.3~5V
- ♦ Operating Temperature: –40°C to +85°C
- Dynamic energy-saving
- ♦ Pre-charge for ghosting reduction
- ♦ LED open detection
- Enhanced Circuit for Caterpillar Cancelling
- Enhancement: Non-uniformity at low gray scale,
 Color shift, low gray mosaics, Dim line at first scan
- ♦ Integrating LED protection circuit
- Elimination high contrast coupling an color-cast between modules

Package

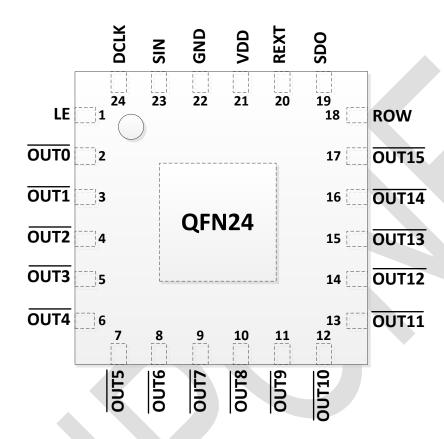
AP: SSOP24-P-150-0.635

Quad Flat No-Lead

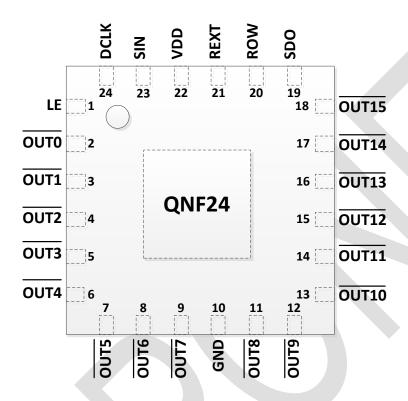

AN: QFN24-4*4-0.5

ICND2065

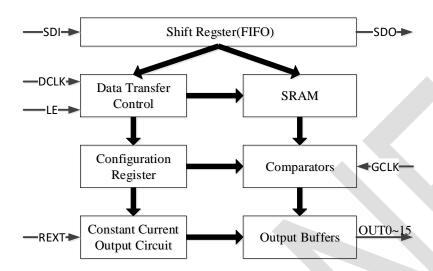
Pin Configuration


1 AP: SS0P24-P-150-0.635

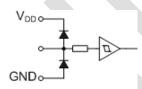
	ICND2065(SSOP24)			
Pin No.	Pin Name	Function		
1	GND	Power Ground		
2	SIN	Serial data input		
3	DCLK	Clock input terminal for data shift and command information		
4	LE	Data transfer command input		
5~20	OUTO ~ OUT15	Constant current output		
21	ROW	Scan Line change signal		
22	SDO	Serial data output		
23	REXT	Constant-current value setting .Connection to an external resistor to GND		
24	VDD	Power-supply voltage		


2 AN-01: QFN24-4*4-0.5

	ICND2065AN-01(QFN24)				
Pin No.	Function				
1	LE	Data transfer command input			
2~17	OUT0 ~ OUT15	Constant current output			
18	ROW	Scan Line change signal			
19	SDO	Serial data output			
20	REXT	Constant-current value setting .Connection to an external resistor to GND			
21	VDD	Power-supply voltage			
22	GND	Power Ground			
23	SIN	Serial data input			
24	DCLK	Clock input terminal for data shift and command information			


2 AN-02: QFN24-4*4-0.5

		ICND2065AN-02(QFN24)
Pin No.	Pin Name	Function
1	LE	Data transfer command input
2~9,11~18	OUT0 ~ OUT15	Constant current output
10	GND	Power Ground
19	SDO	Serial data output
20	ROW	Scan Line change signal
21	REXT	Constant-current value setting .Connection to an external resistor to GND
22	VDD	Power-supply voltage
23	SIN	Serial data input
24	DCLK	Clock input terminal for data shift and command information



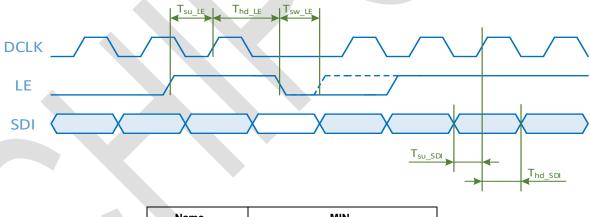
ICND2065 Block Diagram



I/O Equivalent Circuits

1. GCLK, SDI, LE

2. DCLK


3. SDO

Data Transfer Order

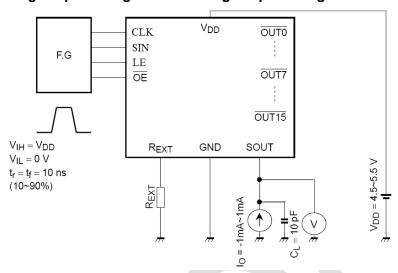
Data Order	Line	Channel
1		Channel 15 (OUT15)
2	Line 1	Channel 14 (OUT14)
	Line	
16		Channel 0 (OUT0)
17		Channel 15 (OUT15)
18	Line 2	Channel 14 (OUT14)
	Line 2	
32		Channel 0 (OUT0)
1009		Channel 15 (OUT15)
1010	Line 64	Channel 14 (OUT14)
	Lille 64	
1024		Channel 0 (OUT0)

Timing Diagram

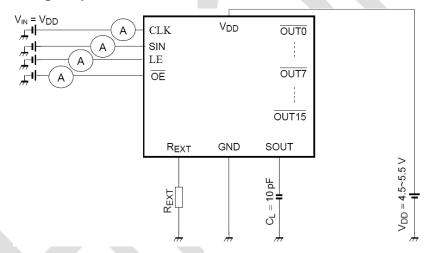
Name	MIN
T _{su_LE}	7ns
T _{hd_LE}	7ns
T _{sw_LE}	10ns
T _{su_SDI}	3ns
T _{hd_SDI} ,	3ns

Maximum Rating (Ta=25°C)

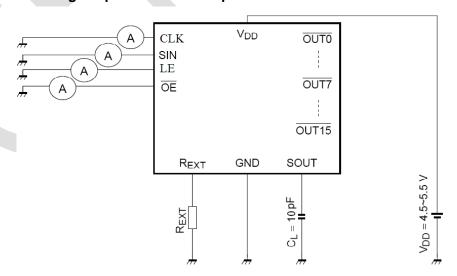
Characteristics		Symbol	Rating	Unit	
Supply Voltage		V_{DD}	0~6.0	V	
Output Current		lo	25	mA	
Input Voltage		Vin	-0.4~V _{DD} +0.4	V	
Output voltage		Vouт	10V		
Clock Frequency		Fclk	35	MHz	
GND Terminal Current	GND Terminal Current		+500	mA	
Power Dissipation	AN	D-	4.09	W	
(On PCB,25℃)	AP	- P _D	1.98	VV	
The arrest Decistors	AN	В	30.5	°CAA	
Thermal Resistance	AP	R _{th(j-a)}	64	°C/W	
Junction Temperature		T _j	150	$^{\circ}$ C	
Operating Temperature	Operating Temperature		-40 ~ 85	${\mathbb C}$	
Storage Temperature		T _{stg}	-55 ~ 150	$^{\circ}$	


Electrical Characteristics (Unless otherwise specified, V_{DD} =4.5~5.5V, T_a =25℃)

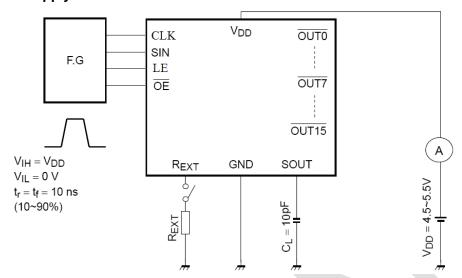
Characteristics	Symbol	Test circuit	Test Conditions	Min	Тур	Max	Unit
High level logic output voltage	Vон	1	I _{OH} =-1mA, SDO	V _{DD} -0.4	-	V_{DD}	V
Low level logic output voltage	Vol	1	I _{OH=+} 1mA, SDO	-	-	0.4	V
High level logic input voltage	V _{IH}		-	0.7*V _{DD}	-	V_{DD}	V
Low level logic input voltage	VIL	3	-	GND	-	0.3*V _{DD}	V
High level logic input current	Іін	2	V _{IN} =V _{DD} , SDI,CLK,LE,GCLK	-	1	1	μΑ
Low level logic input current	lιL	1	V _{IN} =GND SDI,CLK,LE,GCLK	-1	ı	-	μΑ
Dower cupply ourrent	I _{DD1}	4	Rext=Open, Out off	-	4.5	6.0	mA
Power supply current	I _{DD2}	4	Rext=1.24KΩ, Out off	-	6.0	7.0	mA
Constant current error	Δlo	5	0.5mA~25mA	-	±1.0	±2.0	%
Constant current power supply voltage regulation	%V _{DD}	5	V_{DD} =4.5~5.5V, , R_{EXT} =3kΩ, $\overline{OUT10} \sim \overline{OUT15}$	-	±0.1	-	%/V
Constant current output voltage regulation	%Vouт	5	V_0 =0.6~3.0V, R_{EXT} =3k Ω , $OUTI0 \sim OUT15$	-	±0.1		%/V
Pull-down resistor	R _{DOWN}	2	DCLK	100	200	400	kΩ



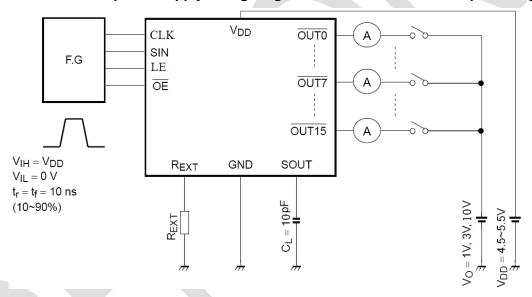
Test Circuit


Test Circuit1: High level logic input voltage/Low level logic input voltage

Test Circuit2: High level logic input current/Pull-down resistor



Test Circuit3: Low level logic input current/Pull-up resistor



Test Circuit4: Power supply current

Test Circuit5: Constant current output/Output OFF leak current/Constant current error

Constant current power supply voltage regulation/Constant current output voltage regulation

Application Information

ICND2065 exploits precise current regulation technology, providing small channel-to-channel and IC-to-IC current variations.

- 1) The maximum current variation between channels is less than ±2.0%, and that between ICs<±2.0%.
- 2) The current characteristic of output stage is flat. The output current can be kept constant regardless of the variations of LED forward voltage.

Setting Output Current

The output current (lout) of ICND2065 is set by an external resistor, Rext. The relationship between lout and Rext is :

$$Iout = \frac{18}{R_{EXT}} * Gain$$

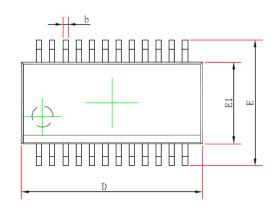
For 67% (Gain < 200% Gain = (Igain - 127) *1.56%

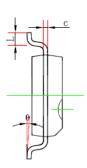
255≥Igain≥170

For 22% < Gain < 67%

Gain=Igain * 0.525%

127≥lgain≥42

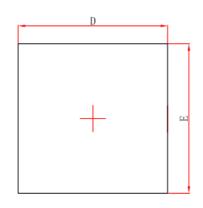


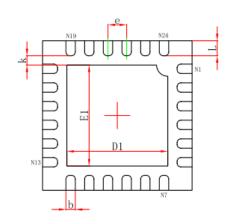


Package Outline

SS0P24-P-150-0. 635

SSOP24 (150mil) PACKAGE OUTLINE DIMENSIONS




Symbol	Dimensions In	Dimensions In Millimeters		s In Inches
Symbol	Min	Max	Min	Max
A		1.750		0.069
A1	0.100	0.250	0.004	0.010
A2	1. 250		0.049	
b	0. 203	0.305	0.008	0.012
c	0.102	0. 254	0.004	0.010
D	8.450	8.850	0.333	0.348
E1	3.800	4.000	0.150	0. 157
E	5.800	6. 200	0. 228	0.244
e	0.635 (BSC)		0.025	(BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

QFN24

QFNWB4×4-24L (PO. 50TO. 75/O. 85) PACKAGE OUTLINE DIMENSIONS

Bottom Vlew

Top View

Side View

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Syribor	Min.	Max.	Min.	Max.	
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203	REF.	800.0	REF.	
D	3.924	4.076	0.154	0.160	
E	3.924	4.076	0.154	0.160	
D1	2.600	2.800	0.102	0.110	
E1	2.600	2.800	0.102	0.110	
k	0.200MIN.		0.008	BMIN.	
b	0.200	0.300	0.008	0.012	
е	0.500TYP.		0.020	TYP.	
L	0.324	0.476	0.013	0.019	

Product Ordering Information

Product number	Package (Pb-Free)	Weight (mg)
ICND2065AP	SS0P24-0. 635	130
I CND2065AN-01	QFN24-4*4-0.5	38
I CND2065AN-02	QFN24-4*4-0.5	38

Revision History

Rev	Date	Description
1.0	2018/06	Initial Release
1.1	2020/04	Add QFN Package
1.2	2020/08	Add Thermal Resistance

Important information

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright © 2015, Chipone Technology (Beijing) Co., Ltd.