

ICND2112

(6-Channel and 8-Line PWM Constant Current LED Driver)

Description

The ICND2112 is 6-Channel and 8-line PWM Constant Current LED Driver. All 6-channels constant current can be set by a single external resistor, which provides users flexibility in controlling the light intensity of LEDs.

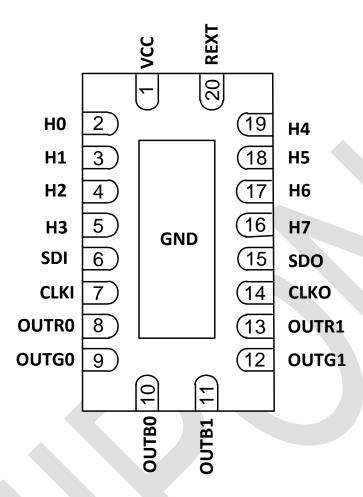
ICND2112 is designed for dual line concatenated transmission. SDI, CLK double line data and control instruction serial transmission, the number of cascades is 150.

The use of dual line protocol transmission can simplify the design, and the application of QFN20 super small package to more design occasions. Using the PWM design of 16bit, the super high refresh rate of 3840Hz can be easily reached.

Features

- ♦ 6-channel constant current output
- ♦ Output current setting range: 2~30mA×16@V_{DD}=5V constant current output 2~15mA×16@V_{DD}=3.3Vconstant current output
- ♦ Current accuracy
 Between channel :< ±1.5%
 Between ICs :< ± 3.0%
- ♦ Fast response of output current
- ♦ I/O: Schmitt trigger input
- ♦ 16 bit PWM gray scale
- ♦ Data transfer frequency:f_{MAX}=12.5MHz(Max)
- ♦ Power supply voltage: V_{DD} =3.3 ~ 5V
- ♦ Operating Temperature: –40°C to +85°C
- ♦ Pre-Charge for Ghosting Reduction
- ♦ LED Protection Circuit

Package



ICND2112

Pin Configuration

QFN20-4. 5*2. 5*0. 8

	ICND2112 BN (QFN20)				
Pin No.	Pin Name	Function			
1	VCC	Power-supply voltage			
2-5	H0-H3	Power switch output			
6	SDI	Serial-data or command input			
7	CLKI	Clock input terminal for data shift on rising edge			
8-13	OUTR0-OUTB1	Constant current output			
14	CLKO	Clock output to the following IC			
15	SDO	Serial-data or command output to the following IC			
16-19	H7-H4	Power switch output			
20	REXT	Constant-current value setting .Connection to an external resistor to GND			
EPad	GND	Power ground			

Maximum Ratings (T_a =25℃)

Characteristics	Symbol	Rating	Unit
Supply Voltage	V_{DD}	0~5.5	V
Output Current	Io	30	mA
Input Voltage	V _{IN}	-0.4~V _{DD} +0.4	V
Output voltage	V _{OUT}	10V	
Clock Frequency	F _{CLK}	12.5	MHz
Operating Temperature	T _{opr}	-40 ~ 85	\mathbb{C}
Storage Temperature	T _{stg}	-55 ~ 150	${\mathbb C}$

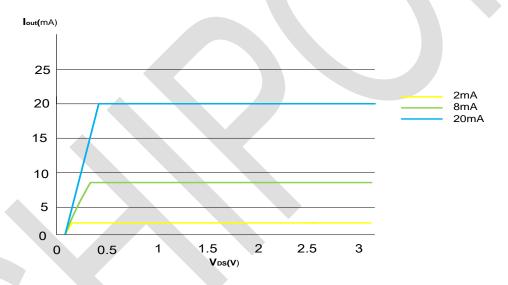
Electrical Characteristics (Unless otherwise specified, V_{DD} =4.5~5.5V, T_a =25℃)

Characteristics	Symbol	Test circuit	Test Conditions	Min	Тур	Max	Unit
	I _{DD1}	4	Rext=Open, OUT off	-	2.8		mA
	I _{DD2}	4	Rext=2KΩ, OUT off	ı	7.2		mA
Power supply current	I_{DD3}	4	Rext=10KΩ, OUT off	ı	4.2		mA
	I _{DD4}	4	Rext=2KΩ, OUT on	ı	7.3		mA
	I _{DD5}	4	Rext=10KΩ, OUT on	-	4.3		mA
Constant ourrent output	I _{O1}	5	V_{DD} =5.0V, V_{O} =1.0V, R_{EXT} =1.23k Ω	-	15	-	mA
Constant current output	I _{O2}	5	V_{DD} =5.0V, V_{O} =1.0V, R_{EXT} =12K Ω	-	1.54	-	mA
		5	V_{DD} =5.0V, V_{O} =1.0V,	-	±0.23	±0.45	mA
Constant current error	ΔΙΟ		R_{EXT} =1.23k Ω ,				
			OUTR0~OUTB1				
			V _{DD} =4.5~5.5V,				
Constant current power supply	%V _{DD}	5	V _O =1.0V,	_	±0.2	_	%/V
voltage regulation	70 V DD	3	$R_{EXT}=1.24k\Omega$,	_	10.2	_	
			OUTR0~OUTB1				
			V _{DD} =5.0V,				
Constant current output voltage	%V _{OUT}	5	V _O =1.0~3.0V,	-	±0.1		%/V
regulation			R_{EXT} =1.24k Ω ,				-⁄o/ V
			OUTR0~OUTB1				

DC Items (Unless otherwise specified, T_a =-40 $^{\circ}$ C ~85 $^{\circ}$ C)

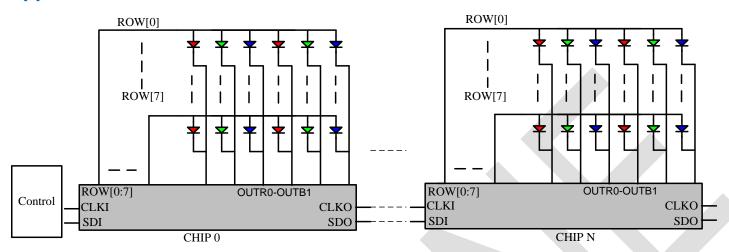
Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Voltage	$V_{\scriptscriptstyle DD}$	-	3. 3	5	5. 5	٧
Output Voltage when ON	V _{o (on)}	0UTn	0.6	-	5	٧
High level logic input voltage	V _{IH}	-	0. 7*V _{DD}	-	V_{DD}	٧
Low level logic input voltage	VIL	ı	GND	-	0. 3*V _{DD}	V
Constant current output	I ₀	0UTn	2	-	30	mA

Application Information


ICND2112 exploits current precision controlling technology, and provides nearly no current variations from channel to channel and from IC to IC.

- 1) The maximum current variation between channels is less than ±1.5%, and that between ICs<±3.0%.
- 2) The current characteristic of output stage is flat, and can be kept constant regardless of the variations of LED forward voltage.

Setting Output Current


The output current (lout) of ICND2112 is set by an external resistor, Rext. The relationship between lout and Rext is

$$lout=(V_{R-EXT}/R_{ext})*15 V_{R-EXT}=1.24V; Igain=100\%$$

Application Circuit

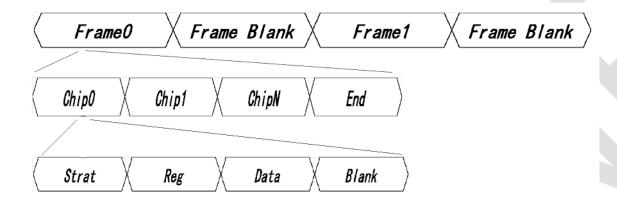
The above is a display driver circuit using ICND2112. Each chip drives 8 line and 2 sets of RGB, a total of 16 RGB-LED lights. The data is transferred and configured by dual line serial concatenation. The data of chip0 is sent first, and the data of chip N is sent at last.

Control and Data

Using dual line transmission mode, the CLK signal is transmitted at a fixed frequency and needs to be sent continuously, without interruption. The SDI signal is transmitted for the data and instruction, and is collected and written when the CLK signal is on the rising edge.

Command and descriptions are as follows:

Name	Command	Description
Start	Frame start	32bit date=1
End	Frame end	60bit date=1
Blank	Blank signal	16bit data=0
Reg	Reg input	48bit Register, Send Reg0 first, then send Reg1,high bit in front The bit[0] and bit[15] of Reg0,Reg1 and Reg2 must be 0, that is, REG0[14:1] and REG1[14:1] are valid register bits
Data	Date input	96bit data for each line, 8lines of 768bit. first send ROW0~ROW7 of CH0, then send ROW0~ROW7 of CH1,untill ROW0~ROW7 of CH5,high bit in front chip0ch0row0-chip0ch0row1-chip0ch0row2-chip0ch0row3chip0ch0row7 chip0ch1row0-chip0ch1row1-chip0ch1row2-chip0ch1row3chip0ch1row7chip0ch5row0-chip0ch5row1-chip0ch5row2-chip0ch5row3chip0ch5row7
Blank The End of each frame needs at least 2176 bits next Start , (256+16)*8=2176 frame		The <i>End</i> of each frame needs at least 2176 bit0 intervals between the next <i>Start</i> , (256+16)*8=2176



Waveform of Display

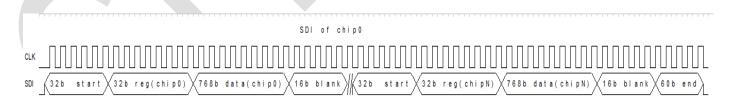
Between frames and frames, it is necessary to add *Frame Blank* at least 2176 bit0.

The chip sequence of input data is: chip0,chip1···chip N, ending with the End instruction, indicating the end of the frame transmission.

The sending order of each chip is: Start, Reg, Data, Blank

Reg: 48bit Register, Send Reg0 first, and then send Reg1, Reg2 high bit in front

The bit [0] and bit [15] of Reg0 ,Reg1 and Reg2 must be 0, that is, REG0 [14:1] , REG1 [14:1] and REG2 [14:1] are valid register bits


Data: first send ROW0~ROW7 of CH0, then send ROW0~ROW7 of CH1, until ROW0~ROW7 of CH5,high bit in front

chip0ch0row0-chip0ch0row1-chip0ch0row2-chip0ch0row3...chip0ch0row7 Chip0ch1row0-chip0ch1row1-chip0ch1row2-chip0ch1row3...chip0ch1row7

-chip0ch5row0-chip0ch5row1-chip0ch5row2-chip0ch5row3...chip0ch5row7

NOTE:

- 1 Data is16bit, The maximum value of data is 65534 (i.e. 111111111111110, not 16bit is 1).
- When the number of scans is less than 8, 8 lines of data still need to be transmitted. If the effective data is insufficient, blank data can be added to fill in.
- 3 The CLK signal is transmitted at a fixed frequency and needs continuous transmission.

Register

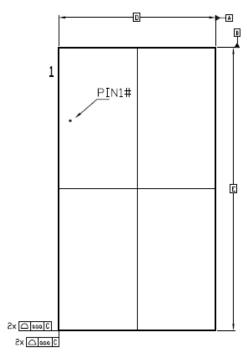
Reg0

Reg	Name	Default	Description
[15]	Reserved	1b'0	
[14:13]	R_WID	2b'11	Data bit select (low data is valid, data high is 0). Group number is fixed 256,CLK for each group: 00: 13bit(32CLK/GROUP) 01: 14bit(64CLK/GROUP) 10: 15bit(128CLK/GROUP) 11: 16bit (256CLK/GROUP)
[12:9]	R_DUM	4b'1111	Line free time =(R_DUM<3:0>+1)*TCLK
[8:5]	R_AG	4b'1000	Upper ghosting elimination time=(R_AG<3:0>+1)*TCLK
[4]	PWM-wider	1'h0	Enhancement for low gray 1:Enable 0:Disable
[3:0]	TEST	4b'0000	Test Only

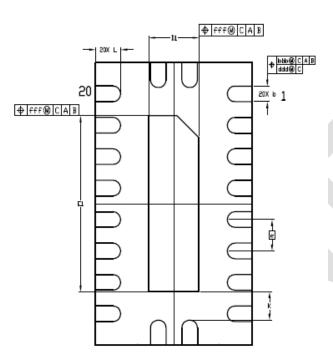
Reg1

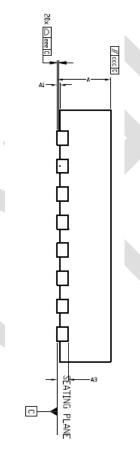
Reg	Name	Default	Description
[15]	Reserved	1b'0	
[14]			Line output
	R_ROWOFF	1b'0	1: Disable
			0: Enable
			Scan line number
			111:8
[13:11]	R_ROWSEL	3b'111	110:7,
[10.11]	N_NOVEL	05 111	.,
			010:3
			001&000:2
[10:9]	R_ROWDNV	2b'11	Upper ghosting elimination level adjust
[8:6]	R_V0P3	3b'100	Test Only
			Reg2
[5]	R_REG2EN	1b'1	0:Disable
			1:Enable
			Enhancement for low gray
[4]	R_BREAK	1b'0	0:Disable
			1:Enable

[3:2]	Reserved	2b'0	
[1]	R_UP	1b'0	Lower ghosting elimination 0:Disable 1:Enable
[0]	Reserved	1b'0	


Reg2

Reg	Name	Default	Description
[15]	Reserved	1b'0	
[14: 10]	R_G2R	56'11111	Green Current adjust(Red is 100%) Igain_Green=R_G2R*1.61%+50%
[9:5]	R_B2R	I 5h'11111	Blue Current adjust(Red is 100%) Igain_Blue=R_B2R*2.41%+25%
[4:1]	R_VUP	4b'1000	Lower ghosting elimination level adjust
[0]	Reserved	1b'0	




Package Outline

TOP VIEW

BOTTOM VIEW

DIM SYMBOL	MIN.	N□M.	MAX.	
	0.70	0.75	0.80	
Α	0.80	0.85	0.90	
A1	0	0.02	0.05	
A3	-	0.20 REF	_	
b	0.20	0.25	0.30	
D		2.50BSC		
E		4.50BSC		
D1	0.70	0.80	0.90	
E1	2.70	2.80	2.95	
е		0.50BSC	0.50BSC	
L	0.35	0.40	0.45	
K	0.20	_	-	
۵۵۵		0.15		
bbb				
CCC		0.10		
ddd		0.05		
eee		0.08		
fff		0.10		

Product Ordering Information

Product number	Package (Pb-Free)	Weight (mg)
ICND2112BN	QFN20-4.5*2.5*0.85	25.9

Important information

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright ©2015, Chipone Technology (Beijing) Co., Ltd.