




## **Receiving Card**



# Specifications

| Document Version | Release Date | Description                                                                                                                                                                                               |
|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V1.0.4           | 2023-12-30   | Updated feature descriptions.                                                                                                                                                                             |
| V1.0.3           | 2022-12-27   | <ul> <li>Updated the description of the maximum resolution.</li> <li>Updated the low latency description.</li> <li>Updated the packing box dimensions.</li> <li>Deleted the LVDS transmission.</li> </ul> |
| V1.0.2           | 2022-07-13   | Updated the input voltage.                                                                                                                                                                                |
| V1.0.1           | 2022-03-26   | <ul> <li>Added the dimensions diagram description.</li> <li>Updated the certifications description.</li> <li>Updated some feature descriptions.</li> <li>Updated the appearance diagram.</li> </ul>       |
| V1.0.0           | 2021-08-05   | First release                                                                                                                                                                                             |

## **Change History**

## Introduction

The XC190 is a high-end small receiving card developed by Xi'an NovaStar Tech Co., Ltd. (hereinafter referred to as NovaStar). For PWM driver ICs, a single XC190 supports resolutions up to 512×512@60Hz. Supporting various functions such as Image Booster, pixel level brightness and chroma calibration, quick adjustment of dark or bright lines, low latency, 3D, individual gamma adjustment for RGB, image rotation in 90° increments, image rotation at any angle, and HDR, the XC190 can significantly improve the display effect and user experience.

The XC190 comes with DDR2 connectors for communication, resulting in good compatibility. It supports up to 32 groups of parallel RGB data or 64 groups of serial data (expandable to 128 groups of serial data), and is suitable for various on-site setups.

## Certifications

#### RoHS

If the product does not have the relevant certifications required by the countries or regions where it is to be sold, please contact NovaStar to confirm or address the problem. Otherwise, the customer shall be responsible for the legal risks caused or NovaStar has the right to claim compensation.

#### **Features**

#### **Improvements to Display Effect**

- Image Booster (Effects depend on driver IC)
  - Color Management: Support the standard color gamuts (Rec.709, DCI-P3 and Rec.2020) and custom color gamuts, enabling more precise colors on the screen.
  - Precise Grayscale: Individually correct the 65,536 levels of grayscale (16bit) of the driver IC to fix the display problems at low grayscale conditions, such as brightness spikes, brightness dips, color cast and mottling. This function can also better assist other display technologies, such as 22bit+ and individual gamma adjustment for RGB, allowing for a smoother and uniform image.
  - 22bit+: Improve the LED display grayscale by 64 times to avoid grayscale loss due to low brightness and allow for more details in dark areas and a smoother image.
- Pixel level brightness and chroma calibration Work with NovaStar's high-precision calibration system to calibrate the brightness and chroma of each pixel, effectively removing brightness differences and chroma differences, and enabling high brightness consistency and chroma consistency.
- Quick adjustment of dark or bright lines The dark or bright lines caused by splicing of cabinets or modules can be adjusted to improve the visual experience. This function is easy to use and the adjustment takes effect immediately.

#### Improvements to Maintainability

- Smart module (dedicated firmware required) Working with the smart module, the receiving card supports module ID management, storage of calibration coefficients and module parameters, monitoring of module temperature, voltage and flat cable communication status, LED error detection, and recording of the module run time.
- Automatic module calibration
   After a new module with flash memory is
   installed to replace the old one, the calibration
   coefficients stored in the flash memory can be
   automatically uploaded to the receiving card
   when it is powered on, ensuring high
   consistency for both display brightness and
   chroma.

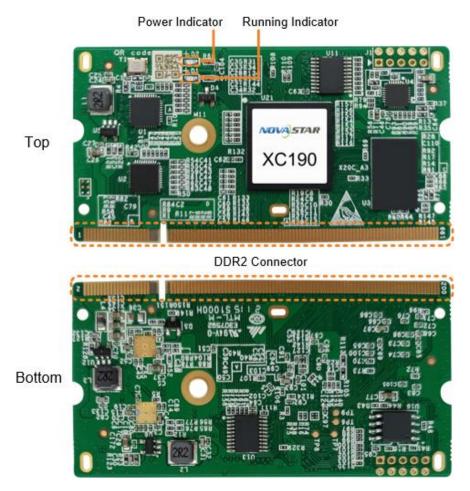
Low latency

For PWM driver ICs, the latency of video source on the receiving card end can be reduced to 1 frame. For DCLK continuous PWM driver ICs, to use low latency, the customized firmware is required.

- 3D Working with the LED controller that supports 3D function, the receiving card supports 3D image output.
- Individual gamma adjustment for RGB Working with NovaLCT (V5.2.0 or later) and the LED controller that supports this function, the receiving card supports individual adjustment of red gamma, green gamma and blue gamma, which can effectively control image nonuniformity under low grayscale and white balance offset, allowing for a more realistic image.
- Image rotation in 90° increments The display image can be set to rotate in multiples of 90° (0°/ 90°/180°/270°).
- Image rotation at any angle Working with the MCTRL R5 LED controller and SmartLCT, the receiving card supports image rotation at any angle.
- HDR
  - Support HDR10 and comply with the SMPTE ST 2084 and SMPTE ST 2086 standards.
  - Support HLG.
- Quick uploading of calibration coefficients The calibration coefficients can be quickly uploaded to the receiving card, improving efficiency greatly.
- Module Flash management For modules with flash memory, the information stored in the memory can be managed. The calibration coefficients and module ID can be stored and read back.
- One click to apply calibration coefficients stored in module Flash
   For modules with flash memory, if the Ethernet cable is disconnected, users can hold down the self-test button on the cabinet to upload the calibration coefficients in the flash memory of the module to the receiving card.

- Mapping 1.0 The cabinets display the receiving card number and Ethernet port information, allowing users to easily obtain the locations and connection topology of receiving cards.
- Setting of a pre-stored image in receiving card The image displayed on the screen during startup, or displayed when the Ethernet cable is disconnected or there is no video signal can be customized.
- Temperature and voltage monitoring The temperature and voltage of the receiving card can be monitored without using peripherals.
- Cabinet LCD The LCD module connected to the cabinet can display the temperature, voltage, single run time and total run time of the receiving card.

#### Improvements to Reliability


 Dual card backup and status monitoring In an application with requirements for high reliability, two receiving cards can be mounted onto a single hub board for backup. In the case that the primary receiving card fails, the backup card will serve to ensure uninterrupted operation of the display.

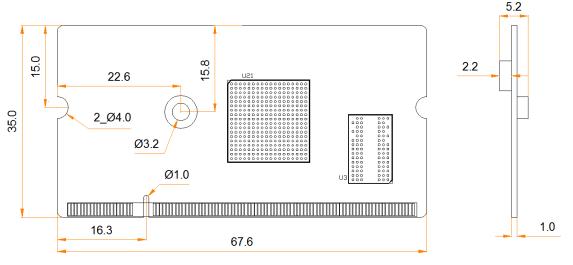
The working status of the primary and backup receiving cards can be monitored in NovaLCT V5.2.0 or later.

 Loop backup The receiving cards and the LED controller form a loop via the primary and backup line connections. If a fault occurs at a location of the lines, the screen can still display the image normally.

- Bit error detection The Ethernet port communication quality of the receiving card can be monitored and the number of erroneous packets can be recorded to help troubleshoot network communication problems.
- Status detection of dual power supplies When two power supplies are connected, their working status can be detected by the receiving card.
- Firmware program readback
   The firmware program of the receiving card can be read back and saved to the local computer.
- Configuration parameter readback The configuration parameters of the receiving card can be read back and saved to the local computer.
- Dual backup of configuration parameters
   The receiving card configuration parameters are
   stored in the application area and factory area of
   the receiving card at the same time. Users
   usually use the configuration parameters in the
   application area. If necessary, users can restore
   the configuration parameters in the factory area
   to the application area.
- Dual program backup Two copies of firmware program are stored in the receiving card at the factory to avoid the problem that the receiving card may get stuck abnormally during program update.
- Dual backup of calibration coefficients The brightness and chroma calibration coefficients are stored in the application area and factory area of the receiving card at the same time. Users usually use the calibration coefficients in the application area. If necessary, users can restore the calibration coefficients in the factory area to the application area.

## Appearance

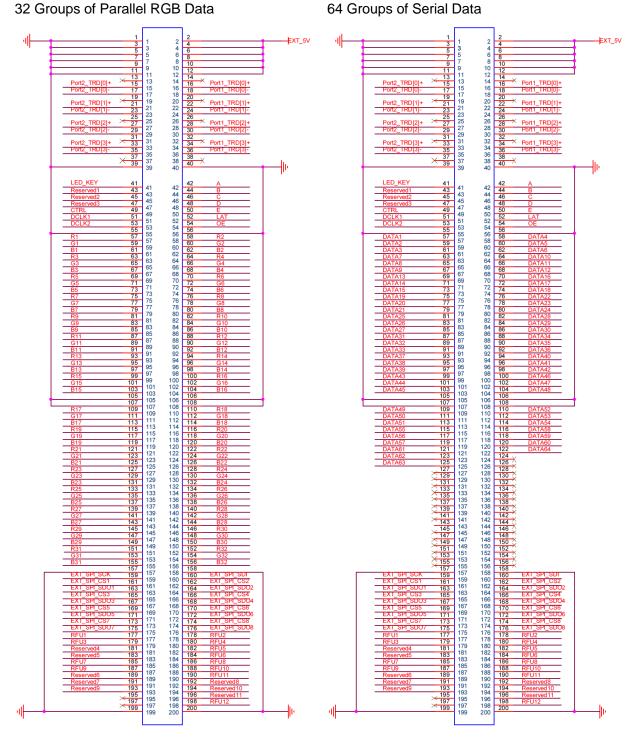



All product pictures shown in this document are for illustration purpose only. Actual product may vary.

## Indicators

| Indicator          | Color | Status                      | Description                                                                                                           |
|--------------------|-------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Running indicator  | Green | Flashing once every 1s      | The receiving card is functioning normally. Ethernet cable connection is normal, and video source input is available. |
|                    |       | Flashing once every 3s      | Ethernet cable connection is abnormal.                                                                                |
|                    |       | Flashing 3 times every 0.5s | Ethernet cable connection is normal, but no video source input is available.                                          |
|                    |       | Flashing once every 0.2s    | The receiving card failed to load the program in the application area and is now using the backup program.            |
|                    |       | Flashing 8 times every 0.5s | A redundancy switchover occurred on the Ethernet port<br>and the loop backup has taken effect.                        |
| Power<br>indicator | Red   | Always on                   | The power input is normal.                                                                                            |

## **Dimensions**


The board thickness is not greater than 1.3 mm, and the total thickness (board thickness + thickness of components on the top and bottom sides) is not greater than 5.7 mm. Ground connection (GND) is enabled for mounting holes.



Tolerance: ±0.3 Unit: mm

To make molds or trepan mounting holes, please contact NovaStar for a higher-precision structural drawing.

#### Pins



#### **32 Groups of Parallel RGB Data**

|               | Pin Description |    |               |  |     |     |     |     |
|---------------|-----------------|----|---------------|--|-----|-----|-----|-----|
| GND           | 1               | 2  | VCC           |  | G15 | 101 | 102 | G16 |
| GND           | 3               | 4  | VCC           |  | B15 | 103 | 104 | B16 |
| GND           | 5               | 6  | VCC           |  | GND | 105 | 106 | GND |
| GND           | 7               | 8  | VCC           |  | GND | 107 | 108 | GND |
| GND           | 9               | 10 | VCC           |  | R17 | 109 | 110 | R18 |
| GND           | 11              | 12 | VCC           |  | G17 | 111 | 112 | G18 |
| NC            | 13              | 14 | NC            |  | B17 | 113 | 114 | B18 |
| Port2_TRD[0]+ | 15              | 16 | Port1_TRD[0]+ |  | R19 | 115 | 116 | R20 |
| Port2_TRD[0]- | 17              | 18 | Port1_TRD[0]- |  | G19 | 117 | 118 | G20 |



|               |    |     | Pin [         | De | scription    |     |     |              |
|---------------|----|-----|---------------|----|--------------|-----|-----|--------------|
| NC            | 19 | 20  | NC            |    | B19          | 119 | 120 | B20          |
| Port2_TRD[1]+ | 21 | 22  | Port1_TRD[1]+ |    | R21          | 121 | 122 | R22          |
| Port2_TRD[1]- | 23 | 24  | Port1_TRD[1]- |    | G21          | 123 | 124 | G22          |
| NC            | 25 | 26  | NC            |    | B21          | 125 | 126 | B22          |
| Port2_TRD[2]+ | 27 | 28  | Port1_TRD[2]+ |    | R23          | 127 | 128 | R24          |
| Port2_TRD[2]- | 29 | 30  | Port1_TRD[2]- |    | G23          | 129 | 130 | G24          |
| NC            | 31 | 32  | NC            |    | B23          | 131 | 132 | B24          |
| Port2_TRD[3]+ | 33 | 34  | Port1_TRD[3]+ |    | R25          | 133 | 134 | R26          |
| Port2_TRD[3]- | 35 | 36  | Port1_TRD[3]- |    | G25          | 135 | 136 | G26          |
| NC            | 37 | 38  | NC            |    | B25          | 137 | 138 | B26          |
| GND           | 39 | 40  | GND           |    | R27          | 139 | 140 | R28          |
| LED_KEY       | 41 | 42  | А             |    | G27          | 141 | 142 | G28          |
| Reserved1     | 43 | 44  | В             |    | B27          | 143 | 144 | B28          |
| Reserved2     | 45 | 46  | С             |    | R29          | 145 | 146 | R30          |
| Reserved3     | 47 | 48  | D             |    | G29          | 147 | 148 | G30          |
| CTRL          | 49 | 50  | E             |    | B29          | 149 | 150 | B30          |
| DCLK1         | 51 | 52  | LAT           |    | R31          | 151 | 152 | R32          |
| DCLK2         | 53 | 54  | OE            |    | G31          | 153 | 154 | G32          |
| GND           | 55 | 56  | GND           |    | B31          | 155 | 156 | B32          |
| R1            | 57 | 58  | R2            |    | GND          | 157 | 158 | GND          |
| G1            | 59 | 60  | G2            |    | EXT_SPI_SCK  | 159 | 160 | EXT_SPI_SDI  |
| B1            | 61 | 62  | B2            |    | EXT_SPI_CS1  | 161 | 162 | EXT_SPI_CS2  |
| R3            | 63 | 64  | R4            |    | EXT_SPI_SDO1 | 163 | 164 | EXT_SPI_SDO2 |
| G3            | 65 | 66  | G4            |    | EXT_SPI_CS3  | 165 | 166 | EXT_SPI_CS4  |
| B3            | 67 | 68  | B4            |    | EXT_SPI_SDO3 | 167 | 168 | EXT_SPI_SDO4 |
| R5            | 69 | 70  | R6            |    | EXT_SPI_CS5  | 169 | 170 | EXT_SPI_CS6  |
| G5            | 71 | 72  | G6            |    | EXT_SPI_SDO5 | 171 | 172 | EXT_SPI_SDO6 |
| B5            | 73 | 74  | B6            |    | EXT_SPI_CS7  | 173 | 174 | EXT_SPI_CS8  |
| R7            | 75 | 76  | R8            |    | EXT_SPI_SDO7 | 175 | 176 | EXT_SPI_SDO8 |
| G7            | 77 | 78  | G8            |    | RFU1         | 177 | 178 | RFU2         |
| B7            | 79 | 80  | B8            |    | RFU3         | 179 | 180 | RFU4         |
| R9            | 81 | 82  | R10           |    | Reserved4    | 181 | 182 | RFU5         |
| G9            | 83 | 84  | G10           |    | Reserved5    | 183 | 184 | RFU6         |
| B9            | 85 | 86  | B10           |    | RFU7         | 185 | 186 | RFU8         |
| R11           | 87 | 88  | R12           |    | RFU9         | 187 | 188 | RFU10        |
| G11           | 89 | 90  | G12           |    | Reserved6    | 189 | 190 | RFU11        |
| B11           | 91 | 92  | B12           |    | Reserved7    | 191 | 192 | Reserved8    |
| R13           | 93 | 94  | R14           |    | Reserved9    | 193 | 194 | Reserved10   |
| G13           | 95 | 96  | G14           |    | NC           | 195 | 196 | Reserved11   |
| B13           | 97 | 98  | B14           |    | NC           | 197 | 198 | RFU12        |
| R15           | 99 | 100 | R16           |    | GND          | 199 | 200 | GND          |

## 64 Groups of Serial Data

|               | Pin Description |    |               |  |        |     |     |        |
|---------------|-----------------|----|---------------|--|--------|-----|-----|--------|
| GND           | 1               | 2  | VCC           |  | DATA44 | 101 | 102 | DATA47 |
| GND           | 3               | 4  | VCC           |  | DATA45 | 103 | 104 | DATA48 |
| GND           | 5               | 6  | VCC           |  | GND    | 105 | 106 | GND    |
| GND           | 7               | 8  | VCC           |  | GND    | 107 | 108 | GND    |
| GND           | 9               | 10 | VCC           |  | DATA49 | 109 | 110 | DATA52 |
| GND           | 11              | 12 | VCC           |  | DATA50 | 111 | 112 | DATA53 |
| NC            | 13              | 14 | NC            |  | DATA51 | 113 | 114 | DATA54 |
| Port2_TRD[0]+ | 15              | 16 | Port1_TRD[0]+ |  | DATA55 | 115 | 116 | DATA58 |
| Port2_TRD[0]- | 17              | 18 | Port1_TRD[0]- |  | DATA56 | 117 | 118 | DATA59 |
| NC            | 19              | 20 | NC            |  | DATA57 | 119 | 120 | DATA60 |
| Port2_TRD[1]+ | 21              | 22 | Port1_TRD[1]+ |  | DATA61 | 121 | 122 | DATA64 |
| Port2_TRD[1]- | 23              | 24 | Port1_TRD[1]- |  | DATA62 | 123 | 124 | NC     |
| NC            | 25              | 26 | NC            |  | DATA63 | 125 | 126 | NC     |
| Port2_TRD[2]+ | 27              | 28 | Port1_TRD[2]+ |  | NC     | 127 | 128 | NC     |
| Port2_TRD[2]- | 29              | 30 | Port1_TRD[2]- |  | NC     | 129 | 130 | NC     |
| NC            | 31              | 32 | NC            |  | NC     | 131 | 132 | NC     |
| Port2_TRD[3]+ | 33              | 34 | Port1_TRD[3]+ |  | NC     | 133 | 134 | NC     |
| Port2_TRD[3]- | 35              | 36 | Port1_TRD[3]- |  | NC     | 135 | 136 | NC     |
| NC            | 37              | 38 | NC            |  | NC     | 137 | 138 | NC     |
| GND           | 39              | 40 | GND           |  | NC     | 139 | 140 | NC     |
| LED_KEY       | 41              | 42 | А             |  | NC     | 141 | 142 | NC     |

|           | Pin Description |     |        |              |     |     |              |
|-----------|-----------------|-----|--------|--------------|-----|-----|--------------|
| Reserved1 | 43              | 44  | В      | NC           | 143 | 144 | NC           |
| Reserved2 | 45              | 46  | С      | NC           | 145 | 146 | NC           |
| Reserved3 | 47              | 48  | D      | NC           | 147 | 148 | NC           |
| CTRL      | 49              | 50  | E      | NC           | 149 | 150 | NC           |
| DCLK1     | 51              | 52  | LAT    | NC           | 151 | 152 | NC           |
| DCLK2     | 53              | 54  | OE     | NC           | 153 | 154 | NC           |
| GND       | 55              | 56  | GND    | NC           | 155 | 156 | NC           |
| DATA1     | 57              | 58  | DATA4  | GND          | 157 | 158 | GND          |
| DATA2     | 59              | 60  | DATA5  | EXT_SPI_SCK  | 159 | 160 | EXT_SPI_SDI  |
| DATA3     | 61              | 62  | DATA6  | EXT_SPI_CS1  | 161 | 162 | EXT_SPI_CS2  |
| DATA7     | 63              | 64  | DATA10 | EXT_SPI_SDO1 | 163 | 164 | EXT_SPI_SDO2 |
| DATA8     | 65              | 66  | DATA11 | EXT_SPI_CS3  | 165 | 166 | EXT_SPI_CS4  |
| DATA9     | 67              | 68  | DATA12 | EXT_SPI_SDO3 | 167 | 168 | EXT_SPI_SDO4 |
| DATA13    | 69              | 70  | DATA16 | EXT_SPI_CS5  | 169 | 170 | EXT_SPI_CS6  |
| DATA14    | 71              | 72  | DATA17 | EXT_SPI_SDO5 | 171 | 172 | EXT_SPI_SDO6 |
| DATA15    | 73              | 74  | DATA18 | EXT_SPI_CS7  | 173 | 174 | EXT_SPI_CS8  |
| DATA19    | 75              | 76  | DATA22 | EXT_SPI_SDO7 | 175 | 176 | EXT_SPI_SDO8 |
| DATA20    | 77              | 78  | DATA23 | RFU1         | 177 | 178 | RFU2         |
| DATA21    | 79              | 80  | DATA24 | RFU3         | 179 | 180 | RFU4         |
| DATA25    | 81              | 82  | DATA28 | Reserved4    | 181 | 182 | RFU5         |
| DATA26    | 83              | 84  | DATA29 | Reserved5    | 183 | 184 | RFU6         |
| DATA27    | 85              | 86  | DATA30 | RFU7         | 185 | 186 | RFU8         |
| DATA31    | 87              | 88  | DATA34 | RFU9         | 187 | 188 | RFU10        |
| DATA32    | 89              | 90  | DATA35 | Reserved6    | 189 | 190 | RFU11        |
| DATA33    | 91              | 92  | DATA36 | Reserved7    | 191 | 192 | Reserved8    |
| DATA37    | 93              | 94  | DATA40 | Reserved9    | 193 | 194 | Reserved10   |
| DATA38    | 95              | 96  | DATA41 | NC           | 195 | 196 | Reserved11   |
| DATA39    | 97              | 98  | DATA42 | NC           | 197 | 198 | RFU12        |
| DATA43    | 99              | 100 | DATA46 | GND          | 199 | 200 | GND          |

## **Reference Design for Extended Functions**

| Name  | Predefinition   | Description                             |  |  |  |
|-------|-----------------|-----------------------------------------|--|--|--|
| RFU1  | POWER_STA1      | Dual power supply detection signal 1    |  |  |  |
| RFU2  | EXT_LCD_BL0     | LCD backlight signal 1                  |  |  |  |
| RFU3  | POWER_STA2      | Dual power supply detection signal 2    |  |  |  |
| RFU4  | EXT_LCD_CD/RS   | LCD RS signal                           |  |  |  |
| RFU5  | EXT_LCD_SDA/DB1 | LCD data signal                         |  |  |  |
| RFU6  | EXT_LCD_SCL/DB0 | LCD clock signal                        |  |  |  |
| RFU7  | EXT_MCU_ADC     | Reserved external voltage detection pin |  |  |  |
| RFU8  | EXT_LCD_CS/RW   | LCD CS signal                           |  |  |  |
| RFU9  | EXT_MCU_TXD     | Reserved serial port output signal      |  |  |  |
| RFU10 | MS_ID           | Dual card backup identifier signal      |  |  |  |
| RFU11 | MS_DATA         | Dual card backup connection signal      |  |  |  |
| RFU12 | EXT_LCD_BL1     | LCD backlight signal 2                  |  |  |  |

## **Specifications**

| Maximum<br>Resolution    | 512x512@60Hz (PWM driver ICs) |                                  |  |  |  |
|--------------------------|-------------------------------|----------------------------------|--|--|--|
| Electrical<br>Parameters | Input voltage                 | DC 3.8 V to 5.5 V                |  |  |  |
| Farameters               | Rated current                 | 0.6 A                            |  |  |  |
|                          | Rated power consumption       | 3.0 W                            |  |  |  |
| Operating<br>Environment | Temperature                   | -20°C to +70°C                   |  |  |  |
| Linnonment               | Humidity                      | 10% RH to 90% RH, non-condensing |  |  |  |

| Storage<br>Environment     | Temperature            | –25°C to +125°C                                                                                                               |  |  |
|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| LIMIONNER                  | Humidity               | 0% RH to 95% RH, non-condensing                                                                                               |  |  |
| Physical<br>Specifications | Dimensions             | 67.6 mm × 35.0 mm × 5.2 mm                                                                                                    |  |  |
| Specifications             | Net weight             | 7.2 g<br>Note: It is the weight of a single receiving card only.                                                              |  |  |
| Packing<br>Information     | Packing specifications | An antistatic bag and anti-collision foam are provided for each receiving card. Each packing box contains 40 receiving cards. |  |  |
|                            | Packing box dimensions | 381.0 mm × 123.0 mm × 196.0 mm                                                                                                |  |  |

The amount of current and power consumption may vary depending on various factors such as product settings, usage, and environment.

#### Copyright © 2023 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

#### Trademark

NOVASTAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

#### Statement

Thank you for choosing NovaStar's product. This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via the contact information given in this document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website www.novastar.tech

Technical support support@novastar.tech